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Abstract
Agriculture is one of the pillars to the social, economical and political well-being
of Ethiopia. It is a source of food, raw materials, employment and much more.
Smallholders are predominant in this economic sector and mostly practice small-
scale production. Several natural and human-induced obstacles challenge the
performance of farm lands in the country. Weather, farm inputs, farm man-
agement practices and soil are among the significant parameters hindering farm
productivity of smallholders. Extensive cropping and grazing practices have
also adversely affected the country’s soil health. These have caused poor water
holding capacity, nutrient depletion, reduced soil depth and poor productivity.
Soil is an important factor for improved farm yields and clearly farm-specific soil
information is needed for planning any intervention. The spatial and temporal
variability of soil attributes needs to be understood, both before and during
cropping season, to help farmers take appropriate measures. The absence of
up-to-date information about these attributes creates a knowledge gap with
stakeholders that is essential to tackle. Technology and participatory research
can be ways through which these problems are addressed. A Wireless Sensor
Network-based Internet of Things (IoT) system together with digital citizen sci-
ence is proposed in this work to create a robust, scalable and affordable field-level
soil data collection and analysis infrastructure. Crop and soil characterization
at the farm plot level can play a significant role in informed decisions in sus-
tainable agricultural practices and hence reduce the severe prevalence of food
insecurity. A knowledge base with a continuous and (near) real-time data flow
coming directly from the field could fuel such logical decisions based on facts and
assist in improved yield production; hence reduced food insecurity. New and
useful information such as suitability of the land or optimal yield estimations
can be inferred from such system. This work envisages to construct a knowledge
base of acquired data and apply Artificial Neural Network (ANN) algorithm to
model the inter-play between farmlands and crop yield. With farmer’s direct
involvement in the data collection and analysis, natural resource management
and best farm practices are also aimed for in the long run. Such inclusive and
participatory platforms also help to create sense of ownership among farmers,
while a substantial amount of data is collected that can document changes at
the farm level. This in turn enable farmers to monitor and adjust to changing
soil and environmental conditions.
Keywords:IoT, WSN, citizen science, knowledge base, agriculture expert system



Contents

1 Sustainable development and agriculture 1
1.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 General perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 General objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.7 Research outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.8 Research impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Related Work 8
2.1 Farm-level soil data collection and analysis . . . . . . . . . . . . . . . 8
2.2 Digital citizen science in agriculture . . . . . . . . . . . . . . . . . . . 10
2.3 Deep learning and big data analysis for in-season crop yield estimation 12
2.4 Research gaps and conclusion . . . . . . . . . . . . . . . . . . . . . . . 15

3 Methodology 16
3.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Proposed research approach . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Tools and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Assessment and evaluation of existing soil data sources . . . . . . . . . 22

3.4.1 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.2 Operationalization: Approach and workflow . . . . . . . . . . . 23

3.5 Wireless sensors network-based IoT system for soil data collection . . 24
3.5.1 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5.2 Wireless communication protocols . . . . . . . . . . . . . . . . 26
3.5.3 Wireless sensor network in agriculture . . . . . . . . . . . . . . 27
3.5.4 Operationalization: Approach and workflow . . . . . . . . . . . 29
3.5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Participatory soil macro-nutrient analysis . . . . . . . . . . . . . . . . 32
3.6.1 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6.2 Operationalization: Approach and workflow . . . . . . . . . . . 34
3.6.3 Tools and methods . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.7 Agricultural advisory system . . . . . . . . . . . . . . . . . . . . . . . 38
3.7.1 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.7.2 Operationalization: Approach and workflow . . . . . . . . . . . 39

3.8 Study area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.9 Sampling design and network layout . . . . . . . . . . . . . . . . . . . 42
3.10 Data sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.11 Anticipated challenges and possible coping mechanisms . . . . . . . . 45
3.12 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Research Plan 48

5 Conclusion 49

Bibliography 50

iii



List of Figures 63

List of Tables 64

iv



Chapter 1

Sustainable development and agriculture

1.1 Preamble
This chapter provides a general background of food security and information chal-
lenges faced by smallholders in its context. It then discusses the problem caused by
information gap and how the proposed work aims to contribute towards filling the gap.
Specific objectives and research questions this work attempts to address are also dis-
cussed in this chapter. Lastly, anticipated impact of the work and expected outcomes
are discussed.

1.2 General perspectives
According to the UN, food security is a condition in which all people, at all times,
have physical, social and economic access to sufficient, safe and nutritious food that
meets their dietary needs and food preferences for an active and healthy life [1]. The
Second UN Sustainable Development Goal (SDG 2), ”Zero Hunger,” aims to achieve
food security by 2030 through promoting sustainable agricultural practices around the
globe [2]. Consequently, productive agricultural practices are given utmost impor-
tance [3]. The SDG2 emphasizes agricultural transformation and rural empowerment
as critical agents to the envisioned change [2]. Mainly because over 70 % of the world’s
poor people, where severe hunger exists, are rurally living and also heavily rely on agri-
culture [2]. Some progress has been observed towards realizing this goal, though it
has not been consistent. The unprecedented number of natural and human–induced
crises is the reason and the challenges have become of great concern [2, 4]. Drought,
climate change, natural resource degradation, and conflicts are some of these factors
for the fragile food security of the world [3]. According to [4], an increase in the num-
ber of people suffering from hunger has even been observed over the past three years.
In 2016, 108 million people were reported as food-insecure from countries affected by
conflicts and crisis; this number was 80 million in 2015 [5]. Millions of people are also
affected by environmental and natural resource limitations and changes.

Africa is one of the regions where food insecurity has worsened and realization of
the SDG2 seems to lag behind with almost half the population falling victim [6]. In
Sub-Saharan Africa (SSA), the situation has escalated and more than 23 % of society
is estimated to have suffered from severe food shortage in the past years [4]. Ethiopia,
as a country in SSA, is no exception and faces difficulty to maintain sustainable food
security for its population.

Agriculture is an important pillar for Ethiopia’s economy. With more than 40 %
contribution to the country’s gross domestic products (GDP), about 85 % of employ-
ment is also in agriculture [7, 8]. Around 70 % of raw material requirements of local
industries are also supplied by agricultural products within the country [9]. Ethiopian
agriculture is smallholder-dominated and rain-fed with two crop seasons: Meher (main
and long rain season from June to September) and Belg (shorter season from Febru-
ary to May). Despite its significant role in the well-being of the country, agriculture
in Ethiopia is marked with frequent low productivity. High climate variability and
limited advanced farming practices highly attribute to this situation. Drought and
high rainfall intensities frequently result in crop failure and severe soil erosion. These
incidents in turn cause land degradation and soil infertility, which are major threats
to agriculture and food security [7]. Overall, rainfall patterns, soil health and land
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degradation, climate change, population growth and poor infrastructure have direct
impact on the performance of agriculture. For instance, the El Niño-induced drought
that occurred in 2015–16, resulted in a serious food insecurity problem and economic
instability [10]. Agricultural production is estimated to decrease by 25 % during such
droughts and this number runs to 75 % in some ecologically vulnerable areas [11].

Particularly, northern Ethiopia is known for poor agricultural productivity because
of high rates of soil erosion as a result of erratic rainfall and land mismanagement [4].
The soil’s physical base and nutrient content is severely damaged and most provinces
have poor natural vegetation cover as well [12]. This has frequently caused reduced
crop production and has challenged meeting minimum food needs [13]. A recent
report [14] also indicates endangered food security reporting that expected harvest
was 40 % below average. Food security, thus, remains a challenge to many households
in Ethiopia and in particular to those of rural areas.

At the national front, a recent World Bank report stated more than 7 million people
required food assistance in 2018 and 3.6 million people who received food aid in the
past will also need food assistance until end of the year [15]. Such incidents are life-
threatening for households with limited off-farm income generation means. Figure 1.1
shows recent food insecurity status of the country and specifically its prevalence in the
Amhara region.

 

Figure 1.1: Food Insecurity Status of Amhara Region Source: [14]

1.3 Challenges
Agricultural production by small households makes a significant contribution to the
world’s food production while paradoxically at the same time these households are
characterized as poor and food-insecure. Especially in the developing world, above
60 % of food supply comes from such small farms [4]. Accordingly, improving the pro-
ductivity and income of smallholders and rural communities has been identified as a key
target to eradicate food insecurity [2]. Most smallholder farmers own a small portion
of land to cultivate, less than 2 ha on average, and mostly rely on natural biophysical
conditions to crop growth [16]. In Ethiopia, for instance, the production is mainly cov-
ered by smallholder farmers which produce about 95 % of crops [8, 17]. Though the
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country has promising potential for agricultural development, only about 13 % of the
land is cultivated with an average farmland size of 1.02 ha per household [18, 19]. Lit-
tle attention has been given to these farmers and with current worldwide intervention
trends, it appears unlikely that the SDG 2 will be achieved in many parts of the world
by 2030, and this includes Ethiopia [16]. Thus, it is urgent to accelerate and scale
up actions to address these challenges while maintaining a balance between natural
resource conservation and adequate, healthy food production [4]. Building a resilient
food system with the limited natural resources and unpredictable climatic conditions,
thus, puts high pressure on current agriculture; food production systems are highly
interlinked societal systems that require attention of coherence [20]. Increased invest-
ment in improved agriculture: climate-resilient, inclusive, environmentally sustainable
and provide enough to feed the world, is urgently needed [21, 22].

Many smallholder farmers practice a mix of crop growing and livestock farming.
Farms are diverse in agro-ecology, farming practices and management. Thus, top-
down, one-for-all solutions do not seem to bring the change anticipated. A robust
and bottom-up approach for sustainable food production is required that considers
this heterogeneity [23]. A number of challenges must be addressed based on the local
demands: sustainable agricultural practices, land and soil restoration, improved water
usage and improved seed. This calls for collaboration among government, international
organizations, civil society and research institutes to create an enabling environment
and policy for smallholders to leverage on [23]. Better understanding of local contexts
and real scenarios of farmers are important for effective execution of interventions.
Agriculture is a dynamic and complex process that needs a holistic and integrated
approach. Land, soil, water and other farm inputs are necessary and scarce inputs
to farming. Sustained use and management of these resources is imperative to obtain
improved yield; modern technology is seen as an enabler for such requirements [24].
Whether in the form of new agricultural practices, improved breeds or improved crops,
technology is believed to significantly improve farm yields, reduce farm waste and
risks [24]. Better and improved access to enabling technologies is, thus, a common
interest among farmers throughout the world [23].

On the other hand, it is often the case that farmers show resistance and are hesitant
to adopt technology-assisted farming [25, 26]. Especially in SSA, adoption of farming
technology lags behind significantly [27]. Such resistance also plays a considerable role
in the low yields of the region [28]. Age, policy, education, risk, start-up cost, lack
of awareness and poor access to information communication technology (ICT) and
non-participatory research efforts are some of the reasons to the resistance [25, 28].
In a study by [29], lack of appropriate information was given as one reason for weak
adoption of farm technology. Proper access to reliable and authentic information on
farming technology is, thus, an important requirement to remove the adoption barrier
and also empower smallholders with better environmentally-friendly farming practices.
Agricultural extension and advisory systems can be used as bridges between technology
and farmers.

Agricultural extension services deliver useful information to farmers [30]. They
aim to promote agricultural productivity, increase food security, improve livelihoods
of farmers and facilitate economic growth through agriculture [31]. In addition, they
can also serve as policy instruments and mobilize farmers for necessary behavioral
changes [32]. In Ethiopia, the agricultural extension service dates back to 1953 and
is known to be one of the densest systems in the world [32]. Training farmers, com-
municating and demonstrating improved farming techniques, offering market informa-
tion and advisory services to farmers are the responsibility of the extension service.
Nonetheless, the service has been stagnant and its impact has not been as effective as
it should be [32]. Lack of precise, detailed and specific agricultural information, lack of
adequate skills and knowledge on systematic data collection, representation, and dis-
semination, absence of localized user-friendly technology that present data in usable
form are mentioned in this context [32]. It is imperative to assist these services by
production of comprehensive data on farm inputs, livelihoods, natural resource usage,
environmental and biophysical attributes. Such data is best disaggregated to commu-
nity or even farm level. Through the provision of up-to-date agricultural information,
extension services can be equipped with required knowledge and contextualized best
practices, to be shared with farmers and assist in improved farm yields [32]. However,
most agriculture data is variable in space and time. This calls for substantial and fre-
quent maintenance to produce real-time and authentic information that helps farmers
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to make informed decisions. The whole process can be resource-intensive and some-
times difficult: data shall be collected from remote and inaccessible farmlands; access
to extension service providers is limited. These and other socio-economic factors de-
mand for cost-effective innovation that addresses the limitations while producing rich
data to fill the information gap. An automated platform that allows proper and timely
production and dissemination of information to involved stakeholders, especially farm-
ers, can help make sustainable farming decisions.

1.4 Problem statement
Three attributes contribute to food security; adequate availability, adequate access
and appropriate utilization of food [33]. With increased farm yield and better produc-
tivity, the first two elements can be achieved. Increase in farm yield, in turn, needs
better understanding of local and farm level contexts of climate, soil, crop, and yield
potentials. Accurate information about all is, thus, needed unceasingly. Nonetheless,
in Africa and notably in Ethiopia, such information is found mostly in fragments and
often does not quite fit with household levels, both in scale and content-wise. For most
of the regions in the country, soil, crop and other agricultural data at household level
are hard, if not impossible, to find. Consequently, intuitive decisions and traditional
farm practices persist causing over-exploitation of nature yet poor production.

Agricultural extension workers also face challenges with the absence of down-scaled
information. In Ethiopia and most developing countries, in general, agricultural exten-
sion services are offered to farmers through physical meet ups with agents. Addressing
all farmlands is difficult and one-on-one agent-farmer advisories are impossible. In
fact, the most common practice is a once-in-awhile field visit by an agent and meet-
ing with groups of farmers or farmers’ visit to agent mostly when critical advisory is
needed. It is also unlikely for an agent to know every details of crop yield impacting
factors. Thus, limited knowledge of an area is found, unless site-specific informa-
tion from which adequate inference can be made exists. The recommendation by [34]
indicates the severity of the information gap and the urgency for such down-scaled
systems, particularly to the Amhara region.

The Amhara region is mostly characterized by rugged mountains, plateaus, valleys,
and gorges. Agricultural practice is mostly mountainous with a slope gradient of 5
to 45 %. The region frequently experiences short violent rainfalls that damage the
soil significantly, with a reported annual soil loss rate of 250 mm/year [34]. Extensive
cropping and grazing practices also have adverse effect on the soil health. These
have caused poor water holding capacity, nutrient depletion, reduced soil depth and
poor productivity. The prevalence of such problems have caused low organic matter
content and nutrients deficiency of the soil, which is a challenge faced in sustained food
security and agricultural growth of the region. According to [35], productivity of the
country’s soil is 40 % lesser than the global average resulting in decline of per-capital
food production. Irregular and erratic rainfall also results in frequent soil water stress
and loss before used by crops. Soil is an important factor for improved farm yields
and clearly farm-specific soil information is needed for planning any intervention. The
spatial and temporal variability of soil attributes needs to be understood, both before
and during cropping season, to help farmers take appropriate measures.

All the aforementioned challenges call for robust, efficient, site-specific, and agro-
ecological information presentation schemes. Every year, the Ethiopia Central Statis-
tics Agency (CSA) collects and disseminates agricultural data under the name Agricul-
tural Sample Survey (AgSS) [36]. This data consists of agricultural production infor-
mation for the country at region and zone level. However, for smallholder-dominated
farming practices, such data cannot be of much use and certainly not at farm level.
Further disaggregation to smaller administrative levels, and even to farm level, is
thus, important to bring data to decisions. Access to the much-needed information
for improved farm productivity and crop yield is expected to allow tackling the afore-
mentioned challenges.

1.5 Hypothesis
Based on the analysis above, the proposed work is based on these hypothesis:

• In Ethiopia, farm field soil data is unavailable or is found only in fragments

4



• Even when found, these data are of poor quality, maybe outdated and not
representative for smallholder farm fields

• Laboratory-based soil chemical analysis is unaffordable, complex, and time-
consuming for use at farm level

• Stakeholders of the agri-chain lack adequate and up-to-date information and
knowledge about farm level yield affecting parameters

• Crop yield heavily depends on soil properties, particularly on moisture and
macro-nutrient levels, and better understanding of these is a cornerstone to any
solution

• Dynamic modeling of soil macro-nutrient and moisture level against crop perfor-
mance helps to better understand the inter-play between farm and crop, which
in turn assists in site-specific logical decision makings

1.6 General objective
The general objective of this project is to create a platform for improved informa-
tion flow from multiple sources to assist crop yield predictions and projections by
implementing a (near) real-time, robust, usable, rapidly deployable and affordable soil
data collection and analysis tool. An Internet of Things (IoT) Wireless Sensor Net-
work (WSN) architecture on a free spectrum communication channel, will be designed
and deployed to acquire soil moisture and temperature. Optimal sensor deployment
schemes will be assessed to scale up and optimize data outcomes. This work also aims
to design participatory citizen science model and use cost-efficient soil testing kits to
determine the total nitrogen, phosphorus and potassium (NPK) nutrient levels of a
soil. The data will then be mapped to spatial information through a digital camera
and further processed. The research opts to engage the farmer community through
an easy-to-use, localized data acquisition and analysis tool. These data, together with
satellite provided data and experts knowledge will be used to construct a knowledge
base from which usable information that supports agricultural advisory is extracted. A
machine learning algorithm will be adapted to design and construct a new knowledge
on the inter-dependency among the obtained data and farm productivity.

Specific objectives with their corresponding research questions are as follows:
1. Specific objective 1: Review and study the usability and impact of existing soil

data sources for better farm productivity at farm-field level

• What are the existing sources for soil data? How viable, representative
and applicable are these data?

• What is the relationship between crop types and soil; as advised and as
found?

• Which information gap challenges the agri-chain stakeholders?

2. Specific objective 2: Design and deploy a WSN-assisted IoT Architecture for
farm field soil data collection

• How can farm level in-situ soil data be collected using in-field sensors and
how efficient is such a scheme?

• How can we design robust, affordable and scalable spatio-temporal soil
data collection infrastructure in the area of work?

• How can collected data be efficiently transmitted to a central system, au-
tonomously and in real-time?

• What are the soil moisture and temperature levels of a farm field and how
variable are they in space and time?

3. Specific objective 3: Explore and design participatory field-level soil macro-
nutrient collection and analysis platforms and quantify the magnitude of such
nutrients.

• How can farmer communities engage in site-specific soil analysis works?
• What participatory and user-friendly soil nutrient data collection system

can be designed?
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• How can we implement accurate and cost effective soil macro-nutrient anal-
ysis at farm field?

• What is the macro-nutrient (NPK) level of a farm field and its spatial-
temporal variability?

• How can volunteer citizen participation in soil data collection be sustained
?

4. Specific objective 4: Design a knowledge base and expert system to support
agricultural advisory services

• How can data from heterogeneous sources be integrated to design farm-
level agricultural knowledge base?

• What is the spatial-temporal correlation between crop yield, soil moisture
and macro-nutrient level?

• What is the suitable soil water and nutrient level for the dominant crops
growing in the study area?

• What are the agronomic, management practices and climatic factors that
affect farm productivity?

• How suitable is the existing soil for crops growing in the area?

5. Specific objective 5: Conduct empirical analysis and evaluate the performance
of the developed system

• How efficient is the data collection infrastructure deployed in this system?

• How accurate and usable is the information obtained through the designed
inference engine?

• What can be done to improve the work?

1.7 Research outputs
The output of the whole work is a PhD dissertation with possible articles as chapters.
Each objective is anticipated to correspond with at least one scientific article output
as follows:

• Assessment and Evaluation of existing soil data sources for Ethiopia at farm-
level : limitations, gaps and possible improvements.

• Towards a robust IoT implementation for sustainable farming practices in rural
Ethiopia

• Citizen Science for participatory soil data collection: opportunities, challenges
and the way forward

• Empirical evaluation and performance assessment of WSN in remote out-door
setup

• Artificial neural network algorithm for farm-field soil suitability and crop yield
estimations based on soil moisture and macro-nutrient level.

• Integration of IoT, participatory approach and Remote Sensing (RS): robust
and scalable primary data collection tool for agriculture

Two MSc research topics are also expected as outputs of this research effort, which
will be conducted in parallel while complementing this work. These are draft ideas
and can be re-defined as the research progresses.

• Design and implementation of active participatory data collection and dissemi-
nation platform for soil data

• Farm field delineation of smallholder farmlands using remote sensing and GIS

• Spatial correlation of farm fields and farm management practices
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1.8 Research impact
Crop yield has strong correlation with socio-economic, environmental and biophysical
situations. These attributes are variable in space and time and shall be addressed ac-
cordingly, if better yield is required. Agricultural decision support systems, hence, need
to entertain all these for producing accurate and helpful information to all stakehold-
ers of the agri-chain. The physical and chemical properties of soil, crop, environment,
and topological nature of the area need to be available for such systems to succeed.
With proper enabling tools, farm level in-situ data of the aforementioned parameters
can be obtained and better findings can be formulated. This work envisions filling
such requirements through a comprehensive tool development for yield affecting data
collection and presentation. With proper integration of in-field and remotely sensed
data and appropriate yield simulation technique, accurate and timely information on
soil status, crop needs and their impact on crop yield will be available. This outcome
offers rich primary data on land status of smallholders, which is important for better
farming practices and improved nutritional value food production. The outcome of
this work is believed to bring farmers, extension services, policy makers, collaborators
and vendors to a common table and work on demand-driven crop yield improving
interventions.

High-level stakeholders can make informed decisions at low-level and design agri-
cultural strategies, considering the smallholders, which is a policy gap this work opts
to fill. Farmers will also get better information on what and when to plant and antic-
ipate the investment return or they can be assisted in their quest for what, how much
and when to exercise interventions on their farm. As such, the research outcome is
believed to equip farmers with better information on their farmlands and how to op-
timize what they have to increase their yield while cutting unnecessary chemical costs
and also taking care of nature. This is the socio-economic aspect this work hopes to
contribute. Extension services will also benefit from this work by obtaining farm-level
information; making it easier to formulate and offer specific farming advisories. More-
over, pairing the information provided by this work with their existing knowledge can
enrich their expertise and close the knowledge gap.

With the abundant and detailed data anticipated, this work can also provide a basis
for future research on natural resource management and climate-resilient subsistence
agriculture practices in the region. It is also to the researchers’ belief that with the
participatory and engaging platform, farmers will positively contribute to the work
while attaining better understanding of their environment. This, in turn, enhances
the adoption rate of further technological interventions pertaining to the research
outcome. The proposed work strongly believes in inspiring younger generations of
the community in science and technology researches and hope in creating a strong
design thinking skills among the participants; where real problem solving innovations
should come from. Through the youth participation, better environmental awareness
is created with long-term impact on natural resource conservation while creating tech-
enabled future farmers. The supposed positive influence the youth could make on
their family and the community as a whole in terms of better farming practices is also
believed to be strong. Assisting the community on the sustained food security journey
through technology and engagement is the vision of this work.

1.9 Summary
Soil is an important attribute that affects productivity of farm-fields. In countries
like Ethiopia, where agriculture has a significant economical role, it is imperative to
monitor the status of the soil regularly to make logical decisions regarding farming
practices, input use and resource management, among others. Smallholder farmers
need expert knowledge and advices on such practices; stakeholders such as agriculture
extension agents, governmental and non-governmental aid organizations also require
these information to plan and base their contribution on. However, the absence of
up-to-date soil data creates considerable knowledge gap and hinders such actions con-
tributing to the poor productivity of farm-lands and thus considerable prevalence of
food insecurity exists through out the country. Providing robust, scalable and efficient
timely data on soil is thus required to fill the gap, which is what this research work
aims to achieve.
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Chapter 2

Related Work

2.1 Farm-level soil data collection and analysis
Real time, precise, and affordable data collection and dissemination is vital in increas-
ing agricultural productivity. Agriculture-in particular crop production is a cross-
sectoral process that depends on data coming from various sources: environment, soil,
crop, and other spatio-temporal attributes. These data are variant in space and time,
and data needs to be obtained, if possible, at the atomic level. On the other hand,
in-situ data collection at the farm level is challenging, if not impossible. Conventional
soil sampling techniques are resource intensive, time-consuming and allow only limited
spatial coverage. Detailed, timely, and sufficient site-specific data usually cannot be
obtained. Moreover, agricultural activities are mostly carried out in rural areas and
often sites are inaccessible, especially in developing countries, making it difficult to
acquire what is needed at the desired quality. Information communication technol-
ogy (ICT) is identified as a potential enabler for efficient data acquisition to fill the
gap. With the advent of technology and powerful computing infrastructures, it has
become possible to obtain, analyze, and generate sound agricultural information in
a cost-effective and timely manner. Vast and ever-growing amounts of data about
environmental and climate conditions, soil physical and chemical properties, and oth-
ers are being captured and produced by automated data collection systems. Soil is
one of the most important components of agricultural production and has a dominant
effect on farm productivity, both in terms of quantity and quality. Automated soil
data collection techniques can be generalized into three classes: remote sensing (RS),
proximal sensing [37], and in-field sensing [38].

The large spatial and temporal coverage, reduced cost, and recent advances in high-
resolution imagery, has made RS and GIS technologies indispensable to the capture
and analysis of soil and other farm-related data [39]. RS tools capture soil data
remotely by analysing the electromagnetic radiation reflectance of the earth’s surface
in the visible or infrared (IR) and near-infrared (NIR) wavebands [37]. This reflectance
varies due to the varying properties of the soil, and is used to both distinguish soils
and to draw inferences about soil characteristics. By using optical and microwave RS
tools, data on soil moisture, mineralogy, texture, and micro-nutrients are collected
and analyzed. A recent work by [40] shows how Sentinel 1 and 2 as well as MODIS
satellite data is used to monitor soil moisture and surface temperature.The potential
of RS to sustainable farming practices was also demonstrated in [41]. According to
the authors, information about agricultural water consumption, soil moisture level
and other farm-related data are successfully captured in (near) real-time by Sentinel
satellite. More detailed insight on the role RS and GIS play in agriculture can be
found in [37, 39, 42]. However, most of the soil data obtained through remote sensing
is qualitative and further processing is required to obtain discrete data. Moreover, the
measurement space between the soil and the sensors means that findings are at the
coarse level. The interference of noise and unwanted signals also affect the quality of
data obtained through RS.

A closer look at the soil is achieved using proximal sensors that capture data at a
distance of less than approximately 2 m above the soil surface [43]. This is achieved
through applying high-tech and advanced observation and analysis tools. Electro-
magnetic induction, Soil Electrical Conductivity, Induced Polarization Measurements,
Magnetic sensors, Ground Penetrating Radar(GPR), Gamma-Ray Spectrometry are
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techniques used in this context [37, 44]. In a paper by [45], Hyper-spectral Imag-
ing(HSI) technology is used to classify soil types and to measure the total nitrogen in
a soil. Images of soil samples were captured using near-infrared HSI and processed
in the lab for further investigation. A review of proximal sensors is presented in [46].
The authors reviewed on-the-go soil Nitrogen, Phosphorous, and Potassium (NPK)
data collection sensors and confirmed the applicability of optical sensors for efficient
soil data collection. A review of both RS and proximal sensors technology in soil data
collection and associated challenges was presented in [47]. Most studies indicate the
high potential of such proximal sensing for better observation of soil properties both
at the in-farm and laboratory scales [48]. However, the limited spatial coverage and
high costs hinder full usability of proximal sensors: a price most farmers and specially
of developing countries cannot afford to pay.

The use of small, inexpensive, and efficient sensing devices for in-field data col-
lection has become significant in recent years [49]. The Internet of Things (IoT) and
wireless sensors network (WSN) interconnects objects capable of gathering and ex-
changing information. Through this technology, it has become possible to capture
more accurate data affordably–from the spot automatically to the palms of our hands.
The IoT has gained great momentum both from the research and industry since first
proposed by K. Ashton [50]. It is expected to grow even more in the near future:
around 26 billion things will be connected to the Internet with a possible market value
of $450 billion [51, 52]. In agriculture, IoT is creating remarkable opportunities for
farm improvements: farmers can monitor their farms almost in real time without nec-
essarily being at the farm; application and use of resources has become more efficient,
based on the accurate measurements obtained, leading to smart farming or precision
agriculture. It is anticipated that the IoT will further push the future of farming to
an even higher level [49]. Today, several large IoT-based agricultural projects are seen
across the world: the European Union’s Food and Farm 2020 project, Kansas water
preserving through sensors, Bangladesh’s new sensor technology and the NanoGanesh
are worth mentioning [53]. Researchers are also investigating and designing affordable
farm improvement mechanisms through using the IoT. For example, a wireless under-
ground network system for the continuous monitoring of soil water contents is proposed
by [54]. The work presents a WSN architecture for collecting soil moisture data by
deploying sensors underground; implying that the monitoring of soil information over
large spatial scales and in (near) real-time is possible at reasonable cost. Research
works in [55–60] all show the effective utilization of WSN for farm soil data collection.
According to a review by [61], out of the 72 papers reviewed dealing with sensors used
in agriculture, 27% of the works concern soil data collection, as shown in Figure 2.1
below, showing the potential of the technology for field-level and underground soil
data collection.

Figure 2.1: Wireless sensors network for agriculture applications Source [61]
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In addition to identifying the physical properties of a soil, it is imperative to also
know the fertility status and the soil’s nutrient content. The nutrient identification
and analysis is even more resource intensive than the collection. Common soil nutrient
analysis is performed in highly-equipped soil analysis laboratories; mostly unaffordable
for low-income countries such as Ethiopia [62]. Consequently, soil samples are often
sent to remote laboratories and it takes too long for the analysis result to be returned.
Even when such countries have suitable laboratories, findings are mostly unreliable
for making further decisions due to the lack of experts and inaccurate readings [63],
and are expensive for smallholder farmers to use. Therefore, on the spot, affordable
and timely soil testing techniques are required. Remote sensing, satellite imagery
and digital cameras have all proved their worth in identifying the nutrient content
of a soil; mainly through canopy reflectance and imaging spectroscopy [45, 64–67].
A simpler and farmers-engaging soil nutrient analysis approach will involve the use
of a colorimeter and test kits. Soil test kits can be used to determine the Nitrogen,
Phosphorous and Potassium (NPK) level of a soil, by observing the color change of
a sample soil when mixed with chemicals, without requiring complex laboratory tools
or professionals. Kits are small and are simple to carry and operate in the field while
they are also inexpensive, making them economical and timely. The usability, accuracy
and precision of soil test kits for measuring soil properties was evaluated and positive
findings were reported in [68]. They compared the data obtained using the test kit
to that from standard laboratory analysis and reported the results to be comparable.
The authors recommend repeated test kit measurements to obtain even better results.

In research by [69], a soil test kit is used with colorimetry to determine the NPK
and PH content of a soil sample in Philippines. According to the authors, a color
sensor device equipped with a light-to-digital converter was designed and tested. Soil
directly taken from the farm is immersed in the test kit, which is then used by the
color sensor to determine the NPK level. A promising result was reported in the
finding and the authors concluded that the method is comparable to human readings.
In another work by [70], a polyvinyl alcohol based hydrogel test kit was developed to
detect pre- and post-blast trinitrotoluene (TNT). A digital image colorimetric (DIC)
is used together with the test kit and the colorimetric products from the test kit are
captured using the existing digital camera in a smart phone. The report highlighted
that rapid quantitative and accurate analysis of TNT was achieved by using the test
kit in combination with DIC. A review of three commercially available soil testing
kits to assess their efficiency at determining soil NPK levels was conducted in [71].
LaMotte, Luster Leaf, and Rapitest are the reviewed kits. The review recognized the
effectiveness of the kits but indicated notable performance variations among the kits.
It revealed LaMotte’s data to be more reliable than the others; most closely correlated
with the test results of Oklahoma State University’s Soil, Water, and Forage Analytical
Laboratory (SWFAL). The work also reported the poor K level indication obtained
from all sensors compared to the results found using standard laboratory procedures.
Another work by [72] investigated the accuracy of five commercial soil testing kits:
La Motte Soil Test Kit, Rapitest, Quick Soiltest, Nitty-Gritty, and Soil Kit. The
authors reported 94% and 92% of accuracy for La Motte and Rapitest, respectively,
but recommend Rapitest for its ease of use and of interpretation. The authors also
argue soil chemical data can be obtained economically and in-time by using accurate
test kits. However, all the above mentioned soil data collection and analysis tools will
not offer data to the required extent, if used separately. There is a need to integrate
and take advantage of the existing technological innovations and build a robust soil
data acquisition system at reasonable cost.

2.2 Digital citizen science in agriculture
Public participation has a long and distinguished history in agriculture related re-
search [73, 74] and has several advantages: (1) strong synergies among researchers and
farmers; (2) mutual understanding of local contexts and solutions to address those;
(3) usability and practicability of research findings; (4) improved understandings of
climate, environment and nature resilient production; (5) sense of trust and ownership
on the part of farmers; and (6) large amounts of accurate data [73]. Promoting equal
partnership and a shared vision among stakeholders is crucial for a successful imple-
mentation of agricultural innovations. Research needs to integrate local knowledge
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from farmers, and farmers must also both feel and see the impact and contribution
they are providing to the research and safety of the environment. Most important is
also contribution they make to better farming practices, leading to higher productivity
and sustained living incomes. Moreover, with a strong heterogeneity of socioeconomic
requirements and environmental conditions, methodologies that engage farmers are
gaining interest [74].

However, the trend of participatory agricultural research usually involve limited
numbers of farmers, living close to the research facility, trained and recruited by re-
searchers. Scalability is a concern as additional investment for training and larger
farmer group organizations are needed [75]. Suitable citizen science methodologies
to effectively engage many participants and robustly collect data from farms is vital.
Citizen science is a collaborative approach to scientific research through public in-
volvement as partners rather than just as users [76]. It is a situation in which citizens
contribute to research through voluntarily collecting and analyzing scientific data [77].
Research utilizing citizen science benefits from large ground truth data to base the
investigation on and produce feasible solutions. Digital citizen science has two req-
uisites essential for success: access to digital communication or technology and the
motivation of participants [78]. These attributes call for two tasks: development of
efficient systems to collect, analyze, store and disseminate large datasets, and to both
recruit and sustain volunteer participants [79].

A study by [80, 81] conducted in three different countries Ethiopia, India and
Honduras assessed the usability of digital citizen science for agriculture. The study
indicated the high potential for citizen science at the smallholder farmers’ level and
the high likelihood of farmers using their mobile phones as a communication medium.
Two points are also raised in the work: (1) development of easy to use mobile applica-
tions for the data collection and submission, since the illiteracy rate among smallholder
farmers of the studied area is high, and (2) use of gamification to motivate and keep
participants engaged. Gamification is a new approach introduced as an enabler to
digital citizen science in which game design elements are used in non-game contexts
with the intention of motivating volunteer participation and thereby improve user
experiences [82]. In that study, it was also reported that the majority of the par-
ticipants had an intrinsic motivation to be involved in citizen science. According to
Self-Determination Theory (SDT), intrinsic motivation is when an individual is inter-
ested in doing things with no pre-conditions but a mere satisfaction of performing it all
by themselves; developing self-confidence, competence and efficiency as well as being
connected with others [82, 83]. Thus, the researchers recommended gamification to
sustain active participation of farmers.

ANONYMOUS project is an international project of 16 research institutes which
implements digital citizen science and assesses the usability of gamification strategy
for a collaborative agricultural knowledge construction[84]. The project aimed to de-
velop ICT solutions and enable agri-chain stakeholders to better deal with risks and
uncertain situations. The research runs a simulation based on historical agricultural
data found in Wikipedia to evaluate the impact of gamification on the participants.
According to the paper, the work had been evaluated using the revision history of
4,690 articles, including discussions and related articles extracted between April 2001
and April 2018. The authors found out that the number of actions continued to
grow over time. In another study by [85], estimation of sesame yields in Ethiopia
using digital citizen science and remote sensing was conducted. The research empha-
sized the benefits such harmonization offers to conduct crop yield gap analysis at a
field level with reasonable accuracy. According to the research, integration of citizen
science into sensor-based farm data collection creates a platform for capturing large
datasets about biophysical, geo-location, management, farm/er characteristics, farm
level incidents and socio-economic factors in real time. The work used farmers’ col-
lected crop phenology data to select images within the boundaries of a growing season
per field and extracted vegetation indices values. The extracted values were then
used by the researchers on an empirical model to estimate sesame yield and the re-
searchers were able to observe improved model accuracy; highlighting the opportunity
for using the crowd-sourced data from farm as a calibration to remote sensing based
agricultural models. The information derived from remote sensing can also be used
to validate crowd-sourced information. The study had also included an assessment on
what drives farmers to participate. Agronomic advice was expected by most in re-
turn for their active and continued participation. Thus, the paper recommended that
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farm-level decision support systems be sent to farmers through an SMS or other mo-
bile app platforms for their farm-level management. The research also touched on the
need for sustaining such citizen science schemes for a long period through a strategic
collaboration and partnership with potential stakeholders: public, private and NGO
organizations working towards shared goals. In another attempt, development of a
smartphone application for collecting soil depth, texture, pH and organic-matter con-
tent has also proved to be successful [86]. The paper discuss MySoil, an open project
that engages citizens through a free mobile application used to view soil maps of the
United Kingdom (UK). According to the authors, the application also allows users to
upload photos and description of soils in their locality. The app has attracted more
than 2 million web hits and 12,500 dedicated users since its launch in June 2012. The
Open Air Laboratories (OPAL) soil and earthworm survey is another citizen science
initiative in the UK that is designed to engage citizens in providing environmental
information, including about soil [87]. The work aimed to achieve two objectives: in-
volving the public in soil monitoring and building knowledge and commitment to look
after the soil and inform policy makers on the soil state of the country. That sur-
vey is reported to collect more primary soil information from citizens than any other.
The Global Learning Observations to Benefit the Environment (GLOBE) is another
project aimed at protecting the environment through citizen science by specifically tar-
geting youth participants. The work engages primary and secondary school students
worldwide to collect and send data to a common database from school weather sta-
tions. Students are encouraged to study soils through structured data collection with
defined protocols and standardized tools such as field fertility kits, soil thermometers
and soil moisture sensors [88]. Use of citizen science as aid to the digital soil mapping
(DSM) of classes and properties of the soil is also proposed in [89].

2.3 Deep learning and big data analysis for in-
season crop yield estimation

With such enabling technologies in place, vast and growing amounts of farm data is
being produced, both in-field and remotely. However, such data are of little value
unless processed and presented in a usable form to farmers. This calls for an efficient
data management and analysis platforms that seamlessly integrate the collected het-
erogeneous data. The ability to manage, process and interpret data has become more
important than ever. Efficient data analytics and mapping technologies, such as GIS,
Artificial Intelligence and machine learning, are vital to achieve these functionality [90].
New information about yield improvements, anticipated risks and mitigation, efficient
resource utilization and better market strategies can be inferred [91]. Precision agri-
culture, which refers to small-scale information-based optimization of inputs to make
agricultural processes more productive, relies heavily on the acquisition of accurate
data and analysis methodologies to supply the needs of optimum production [92]. As
agriculture is resource intensive, and resources are growing increasingly scarce, prac-
titioners are more driven to precision agriculture to increase efficiency from existing
resources while also cutting costs significantly [93]. Key elements enabling precision
agriculture are ICT and other technological tools such as sensors, drones, satellites and
autonomous vehicles [93]. In a paper by [94], existing big data projects in agriculture
are reviewed, and the IoT and big data are presented as enablers of precision agricul-
ture. According to the authors, by using IoT and big data, real-time data collection
and real-time forecasting can be implemented that can assist farm management and
operations, and thus change both the scope and organization of farming. theoretical
framework for structuring and analysing data-intensive cases in agro-environmental
research was proposed in [95]. That paper selected use cases from three European
projects to showcase opportunities and challenges for big data in facilitating deci-
sion support in the context of agriculture. A survey of agriculture crop recommender
systems is presented in [96]. The paper reviews machine learning and data mining
approaches applied to farm management and precision agriculture. A crop recommen-
dation system based on soil characteristics and using a machine learning algorithm
is presented in [97]. The authors propose multiple machine learning algorithms to
analyze soil and crop data in order to predict yield. An expert system (ES) using
the IoT for pest, weed and fertilizer management of cotton fields in Pakistan was pre-
sented in [98]. The research used sensors for soil moisture and temperature capture
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and transmission in real-time, which is then used by the ES to make decisions and
send results to farmers’ mobile phones. According to the paper, the system offered
information on diseases diagnosis, pest and weed attacks, pesticide recommendations
as well as disease predictions for the cotton farm investigated.

In [99], a model for smart agriculture using the IoT is presented. A sensor board
with temperature, relative humidity, light intensity, barometric pressure and proximity
sensing and web cameras to capture images of crops are used in that work. The authors
used a Wireless IP Network Gateway (WINGZ) to interconnect the sensor devices to a
central server and a decision support system incorporating crop monitoring and alert
service was implemented. The outcome of this analysis is delivered to users through
web and mobile application interfaces. Agrisys is another precision agriculture system
proposed in [59] which utilizes several soil and environmental sensors and analyze the
resulting big data using a software tool called LabVIEW. With a controller component,
the proposed system is also reported to act dynamically and respond according to the
various inputs collected.

Crop yield estimations within a cropping season are of high importance for a num-
ber of food security related and other agricultural decisions 1. Governmental and
non-governmental bodies, business enterprises, industries, farmers and populations, as
a whole, will benefit from accurate and timely farm yield predictions. In particular, for
countries such as Ethiopia with an agriculture dependent economy, timely yield esti-
mation significantly impacts the economical well-being of the country: it gives suitable
warnings to decision makers on potential gain or loss in crop yields and helps plan for
timely actions; alerts farmers to exploit other income generating options or alterna-
tive marketing strategies. Aid organizations, farm input supplies, agricultural trades
and insurances, agriculture extension advisories all require the best possible crop yield
predictions [100]. Farming practices, soil, inputs and climate affect farm yield, which,
by themselves are very complex. Therefore, modeling is used to create a simplified
representation of these elements and understand their relationship to the crop yield.
A model is a collection of equations and procedures conceptually representing behav-
iors of a system to better understand the system and make improvements [101]. Crop
yield models can be generally classified as empirical, statistical, sample-based or an-
alytical [102]. Empirical models use direct descriptions of observed data or evidence
from subjective sources. Statistical models use quantitative descriptions or regres-
sions of the mechanisms and processes that cause the observed behavior of the system.
Sampling models use actual measurements such as whole plot harvest, crop cut, and
farmers’ estimates. analytical models are simulation models that create a virtual rep-
resentation of crop-weather-soil interactions and generate yield forecasts [101, 103].
Several review papers are available describing crop models and crop yield estimation
models; comparisons, opportunities and challenges [104–107]. Crop simulation models
incorporating environmental, biophysical and crop-specific parameters are reported to
be accurate and versatile in terms of describing the nature of a crop as a function of
the others [101]. The World Food Study (WOFOST), MARS Crop Yield Forecasting
System (MCYFS), Cropping Systems Simulation Model (CropSyst), STICS, Environ-
mental Policy Integrated Climate (EPIC), Decision Support System for AgroTechnol-
ogy ( DSSAT), and Agricultural Production Systems Simulator (APSIM) are some
of the most common and widely used models for yield simulation [108–110]. Several
research projects have been conducted using these models for estimating crop yields
of farms on both small and large scales [111, 112], These models are generally termed
parametric or process-oriented models as they tend to be closed to new situations
that may occur after the model has been trained. The non-parametric models, on the
other hand, have an open architecture in which every variable that happens to have
an impact on the yield will be considered over the growing season[113]. These models
describe the general conditions under which crops are grown and make an assumption
that similar yields can be obtained under those conditions in the future. The models
vary from simple to very complex expert systems that involve artificial intelligent and
can infer the relationship between environmental conditions and crop yield such as by
applying Normalized Difference Vegetation Indices (NDVI) or other temporal profiles
of vegetation indices [114]. In both modeling techniques, data coming from various
sources is required as inputs. The general data flow to yield forecasting systems is
shown in figure 2.2 below.

1Throughout this paper, the terms prediction, estimation and forecast are used inter-
changeably
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Figure 2.2: Data Flow in Yield Forecasting models Source: [115]

With wide spatial coverage, timely and open data access, remote sensing and
satellite technologies are becoming particularly suited to inputs for yield forecasting
models. Monitoring Agriculture with Remote Sensing (MARS) is a good example of
such integration in which high spatial resolution satellite data is used for yield forecast-
ing throughout Europe [110]. Remote sensing has greatly evolved in recent decades
and become valuable for crop models [100, 116–119]. The yield prediction models
depend on efficient tools and methodologies to generate reliable outcomes from the
available data. A more recent advance in yield prediction models is also the use of
algorithms such as artificial intelligence (AI) for data processing and inference making.
Machine learning (ML), neural network (NN) and other AI approaches are used in var-
ious crop yield forecasting works and reported to be accurate. A convolutional neural
network (CNN) and long-short-term-memory (LSTM) NN algorithms were used on
a sequence of remotely sensed images to forecast county-level soya bean yield in the
United States [120]. Once the models had been trained, using the imagery inputs, a
Gaussian Process Modeling, which is a non-parametric probabilistic model, was run
over the models to integrate spatio-temporal dependencies between data points. Ac-
cording to the authors, the models showed weak performance during the season’s start
but better progress was observed as crops grew and more information was gathered
and fed to the models. The authors claim the performance of these models outweighs
other existing systems for county level yield prediction. In another work by [121], the
Convolutional Architecture for Fast Feature Embedding (Caffe) deep learning model
is used for Corn yield prediction in Illinois. The authors used Enhanced Vegetation
Index (EVI) from MODIS, and climate data including monthly max and min tem-
perature, potential evaporation, and pressure as inputs to the model. The authors
evaluated the work using ten cross-fold validation and found a correlation coefficient
of 0.810. The paper claims the advantage deep learning and remote sensing brings for
better yield estimation, particularly for areas for which data is poor.

The Maximum Entropy (MaxEnt) algorithm, which estimates the likelihood of
the occurrence of a species based on presence-only data, is used in a work by [122] for
agricultural crop suitability mapping of two crops in Thailand. Three variant input
datasets were used in this paper: (1) a socio-demographic survey of households; (2)
remote sensing land use and land cover classification using an assembled Landsat TM;
and (3) time-series image and ground data from Geodetic Ground Control points. The
authors reported that the MaxEnt model has great potential for crop suitability mod-
eling , given careful sample size selection and distribution. According to the authors,
the model’s performance was highly affected by the sample size and distribution and
produced varying results for the three different input datasets. With suitable model

14



validation data, independent data and by ensuring effective distribution of sample
data, further improved results can be obtained.

2.4 Research gaps and conclusion
Of course, the performance of any algorithm vary significantly based on the quality
of input datasets. Sometimes, satellite imagery and remotely sensed data are coarse,
especially for heterogeneous and small-scale areas such as smallholder farms in most
developing countries. These farms are often small, exhibit variability in both plant-
ing and harvesting times and differ in farm management practices. These and other
makes it difficult to even determine field boundaries from remote. The farms can
be over-represented or captured data be coarse unless high-resolution tools are used.
Specifically, the chemical soil properties of a farm need to be collected below the top
surface which is difficult and inaccurate if only remote sensing tools are used. There is
a need to complement these data sources with in-field data collection and actual ob-
servations. On the other hand, conventional in-situ data collection on such farm levels
is also challenging. Technological innovations such as WSNs and croud-sourcing tools
can be used to solve the paradox. The use of in-field sensors data in crop models has
been experimented with in [123]. The work deployed hand-held Leaf Area Index (LAI)
measuring instruments, soil moisture and precipitation sensors for data collection. In
that work, the data was then integrated in the LINTUL-3 crop model to forecast
potato crop yield for two experimental fields in the south of the Netherlands. The
work used two years’ worth of data 2010–2011 using the 2010 sensors data for model
calibration and obtained yield simulation for 2011 with an R2 of 0.82. According to
the author, the estimation error was reduced by implementing an assimilation on the
LAI using various datasets including the in-situ LAI taken. The paper concludes by
emphasizing the importance of sensors’ provided data, especially for the calibration
and validation of yield simulation models to improve accuracy. A well-structured digi-
tal infrastructure is recommended by the authors to support in-field spatial variations.
The sensor network enables local and (near) real-time observations and monitoring of
a farm while remote sensing offers larger scale data which might be expensive to ob-
tain using in-field sensors. The IoT and remote sensing technology can offer accurate,
fast and large parcel-level yield impact data collection and analysis tools at low cost.
The combination of remotely sensed and in-field collected data is believed to create a
strong backbone to obtain usable new information on which further farm-level agricul-
tural advisories and decision support systems can rely. With such technological tools
in place, more sustainable crop production practices can also be fostered so reducing
the environmental impacts of agriculture and food insecurity risks. eleaf from the
Netherlands and GEOSYS from France are good examples of platforms that use both
remote sensing and in-field sensors for precision agriculture.
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Chapter 3

Methodology

3.1 Preamble
The purpose of this chapter is to give a general explanation of the research meth-
ods used for the study. The chapter will discuss the research approach and design.
Subsequently, conceptual framework and system architecture are presented, followed
by methodological discussion per objective. Finally, a discussion about study area,
sample size and sampling strategy is presented.

3.2 Proposed research approach
The proposed work aims to continuously monitor the spatial and temporal dynamicity
of soil moisture, temperature and macro-nutrients and derive new information on how
specific crop reacts to any variations of the behaviors. The overall system is broken
down into components shown in Figure 3.1.

As can be seen from the figure, three core modules are defined. WSN and Participa-
tory soil data infrastructure components to acquire in-situ soil data, in (near)real-time,
and Application module that integrates and analyzes the information acquired and
synthesize usable data for decision support in agriculture. Each module is discussed
in detail in section 3.5, section 3.6 and section 3.7 below. To accomplish these func-
tionality, a design science approach is adopted as a research methodology throughout
the life cycle of this work. Design science is described as: “the design and investiga-
tion of artifacts in context” [124]. This approach emphasizes in understanding and
improving a problem context by designing set of possible solutions and artifacts that
interact with the context to bring the desired outcome. The design science approach
has been identified suitable for sciences of the artificial such as computer science and
information systems whose main focus is to synthesize useful correlations between
nature and external environments [125]. The outcomes of such methodology are: con-
structs, methods, models, algorithms or even improved theories and new knowledge.
We thus aim to produce constructs, models and tools for studying the correlation
between soil properties and farm productivity and generate new and usable informa-
tion to actors in agricultural value chains: farmers, agriculture extension agents, aid
organizations, policy makers and other government agencies. Specifically, continual
observations of aforementioned soil properties over a cropping season at farm-fields
to analyze the yield variability is conducted. The in-field observations (interactions)
through efficient data collection infrastructures (artifact) creates better understanding
of the impact of soil in crop yield of farms(construct). Prior knowledge is studied and
explored to understand the problem domain and design appropriate solutions. In do-
ing so, the work also generates new knowledge and findings that are usable for further
investigations and yield improvement actions. There are four pillars of actions to a
design research: problem investigation and implementation evaluation, system design
and specifications, designed system assessment and validation, and system implemen-
tation and deployment. The proposed work, thus, follows this approach to answer the
formulated research questions, as shown in Figure 3.2. Conceptual framework and sys-
tem architecture of the proposed system are also shown in Figure 3.3 and Figure 3.4,
respectively.
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Figure 3.1: Components of the proposed work

3.3 Tools and methods
Both empirical and quantitative research approaches are used to answer the research
questions defined in this work and also to evaluate the behaviors of the artifacts
designed. Quantitative and descriptive statistical models are used to analyze and
describe the inter-relationship between the variables studied and to evaluate existing
interventions. A hierarchical linear model and analysis of variance model will be used
to analyze such correlations. A clustered sampling approach is used to select sample
population in which random sampling will be used for actual sample points. In doing
so, four data collection tools are used: reviewing, surveying, crowd-sourcing, and
observing.

Review : Literature, previous works and experts are consulted to determine the im-
portant yield impact criteria. Moreover, result validation and reliability testing
will be conducted using knowledgeable resources. Crop and yield data from lo-
cal agricultural offices, national and global repositories are also used, as we find
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Figure 3.2: Action pillars of the proposed work

them.
Survey : A sample-based survey approach is used to collect data regarding farm

management practices, cropping patterns and farm input use. Survey on past
years’ yield, as well as anticipated yield for the study duration, is also acquired
to determine the performance of farmlands and fertilizer applications. Closed
questionnaires are thought to be suitable for this purpose as they are less time-
consuming, avoiding participants’ possible resistance and are also less prone to
subjectivity. Moreover, with an exhaustive and clear design, it allows to obtain
accurate and concise findings. An informed consent form is prepared and is used
before we use this method.

Crowd-sourcing : soil’s macro-nutrient data is collected through volunteer citizens
and using efficient, mobile and affordable soil data analysis kits. With this
approach, data is collected in real-time and continually which is crucial for
the temporal analysis of soil properties. It also gives the opportunity for local
community to be involved in research works that targets their area and creates
awareness about local conditions.

Observatory : WSN technology is chosen for the in-situ data acquisition of physical
soil properties. Soil moisture and temperature is obtained at various soil depths.
This approach is preferred mainly because of the infrastructural constraint of
rural areas in obtaining representative farm level and accurate data. It also
produces up-to-date information, which helps to monitor the soil, remotely, in
real-time and spatially distributed.

Since the aim of this work is to assess and monitor smallholder farmlands, proper
identification of permanent crop fields and exploration of dominant crop types growing
in the farmlands is critical. We believe that, the Sen2Agri system is suitable for these
purposes. It is a free and open source stand-alone system developed in an effort
to support agricultural transformations and accurate information productions using
remote sensing [126]. It is an initiative from European Space Agency (ESA) and
captures and processes data automatically from Sentinel-2 (S2)and Landsat-8 (L8)
satellites over an area of interest [127]. The system then generates outputs to serve
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various functionality, including land cover and crop types identification, which is then
used for further analysis like Vegetation Indices (VIs). Detailed technical and research
information about Sen2Agri can be accessed from [128, 129]. Monthly composites of
cloud-free surface reflectance, cropland masks, crop type maps and periodic vegetation
status maps, for the study area, will be obtained through this system. With 10–20 m
spatial and 7 days temporal resolutions input data, the Sen2Agri system will allow
to closely and timely monitor farmlands throughout the growing season. Thus, for
the area of interest this work has targeted, the above-mentioned products will be
produced over the duration of the work. In the following sections, we discuss in detail
the methodologies used for each objective.
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3.4 Assessment and evaluation of existing soil
data sources

3.4.1 Concepts

Soil is a vital input to crop agriculture. It dictates the quality and productivity of
a farmland. The soil also determines the investment a farmer needs to put in order
to improve productivity and obtain better yield. Improved understanding of the soil
is, thus, required to plan, manage and use properly. However, such insight requires
abundant and timely data about the soil, which is found scarcely, especially in most
developing countries. Even when found, it is often out-dated and at coarse level, either
at national or regional level.

For Ethiopia, for instance, the most recent soil data map, EthioSIS, is from
2012 [130]. EthioSIS is the first ever attempt with country level mobilization of efforts
and resources to create detailed soil fertility map [131]. This data, comprises physical
and chemical soil properties, collected at woreda (district) level offering a generalized
representation of soil profile. The soil map is mainly to inform fertilizer blending
by a recommendation system, observing the nutrient levels of studied soils. In line
with this, a fertilizer recommendation atlas was prepared for selected regions of the
country, which informs about soil fertility status and possible nutrient combinations
needed to be used as fertilizers. Accordingly, small fertilizer blending enterprises have
been established to produce the recommended fertilizers. However, with the signif-
icant spatio-temporal variability of soil, the small farm-field details are over-looked.
Thus, the more than 13 million smallholder farmers of the country have no or minimal
information about their soil.

As part of the EthioSIS task, Agricultural Transformation Agency (ATA) produced
soil fertility status and fertilizer recommendation atlas for 134 woredas of the Amhara
region in August 2016 [130]. A total of 12,500 composite samples were collected by
the team using a randomized and gridded sampling strategies. Surface soil and sub
soil depths (0–20 cm and 50 cm respectively) were targeted for the sample collection,
with 80 % taken from annual and perennial croplands and 20 % collected from po-
tential croplands. According to [130], sample preparation and physical soil analysis is
conducted at regional and national soil laboratories, but nutrient content of the soil
was determined at Yara International Soil Testing Laboratory, London. The work re-
ported the use of four prediction and classification algorithms for detailed soil nutrient
prediction: Random Forest (RF), Deep Learning Neural Network (DNN), Gradient
Boosting Model (GBM) and an Ensemble model. The prediction also used the K-fold,
Repeated k-fold and Leave One out Cross Validation algorithms to tune the parameters
for the selected classification algorithms and to estimate accuracy of the classifications.
The performance of the developed prediction model is also reported to be tested and
evaluated, so far with promising results. As a showcase, Table 3.1 presents a summa-
rized fertilizer recommendation information for woredas of the Beshilo basin, collected
from the region’s atlas. The fertilizer recommendation is subsequently down-scaled to
kebele level of each woreda to be used accordingly.

Farming practices are rather diverse between smallholder farms with frequent crop
rotations and other intuitive fertility revival methods. Thus, it is important to also
consider such practices and crop-specific requirements to recommend any intervention,
which is not seen in the aforementioned work. Accordingly, it is imperative to assess
the usability and impact of the fertilizer recommendation system and the methods
used to produce it. Thus, the EthioSIS soil profile will be reviewed in this work to
analyze the spatial and temporal distribution on fine-grain resolutions. Specifically,
usability and impact of this data on smallholder farmlands found in selected woredas
of the Amhara region is assessed. Hypothesis-driven, review-based research approach
is used to explore this source and understand its usability, the gaps, limitations and
possible ways of improvements that can be attempted. This data source is given more
emphasis because it is the most recent data collected, and it has the better spatial
resolution. Below is a discussion of the research approach with the tools and methods
to be used.
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Table 3.1: Fertilizers recommendation for woredas of Beshilo watershed

Woreda Name Recommended fertilizer blends
Lay Gayint NPSB (dominant), NPSZnB, NPSZnBCu, NPSBCu

Tach Gayint NPSB (dominant), NPSZnB, very small NPSZnBCu and
NPSBCu

Simada NPSB (dominant), NPSZnB, very small NPS and NPSBCu
Meket NPSB (dominant), NPSZnB
Wadla NPSB (dominant), NPSZnB

Dawunt Delanta NPSB (dominant), NPSZnB and NPSBCu

Guba Lafto NPSB (dominant), NPSZnB, very small NPSZn, NPS and
NPSBCu

Mekdela NPSB (dominant), NPSZnB, very small NPSZnBCu
Tenta NPSB (dominant), very small NPSZnB and NPSZnBCu

Kuta Ber NPSB (dominant) and very small NPSZnB
Ambasel NPSB (dominant), small NPSZnB and very small NPS

Tehulederie NPSB (dominant), very small NPSZnB, NPS and NPSZn

Dessie Zuria NPSB (dominant), small NPSZnB and very small NPSZnBCu
and NPS

Legambo NPSB (dominant), NPSZnBCu, NPSZnB and very small
NPSBCu

Sayint NPSB (dominant), small NPSZnB and NPSZnBCu

3.4.2 Operationalization: Approach and workflow
The farm-field soil fertility treatments of selected sites will be evaluated considering
the crops planted and the status of the soil observed so far. Empirical evaluation to
determine the between-fields as well as between-crops variations on the acceptance of
the recommended blended fertilizer application is also conducted. Changes in crop
production and yield of the study area is studied to further assess the impact of the
blended fertilizer. Using temporal Sentinel-2 imagery products, dominant crop types
growing in the selected area and various vegetation indices (VIs) will be computed
in support of this activity. In related effort, a survey on dominantly cultivated crop
types, fertilizer use and farm yield variations will be conducted. Farmers, local agri-
culture offices, NGOs and aid organizations working in the area and local and national
agricultural data sources are targeted for this purpose. The favorable soil requirement
of the identified crops is also reviewed and studied in detail. Finally, the correlation
between crop yields of farmlands and the fertilizer application is investigated through
hierarchical linear model (HLM) evaluation approach. This approach is selected due
to the clustered-random sampling scheme used in this work, as presented in 3.9 and
the fact that crop growth depends on multiple parameters. The crop types, landscape
and fertilizer use variations are taken as independent variables which affects the yield
or the dependent variable. We further investigate the significance of farmlands soil
moisture level on the crop yields and fertilizer absorption capabilities of crops. The
overall activities used to realize this objective are given as follows.

• Identify land mask and dominant crop types of the study area, possibly over
two growing seasons: 2019 and 2020

• Collect in-situ data about the crops, yield variability and fertilizer use practices

• Produce seasonal VIs and compute the vegetation condition index (VCI) for
selected crop types

• Assess the soil need variability of the selected crops

• Assess responses of farmlands and crops to the blended fertilizer applications
using HLM:

• Identify data gaps

The conceptual framework of the proposed approach is presented in Figure 3.5.
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Figure 3.5: Conceptual diagram: assessment on usability of existing soil profile

3.5 Wireless sensors network-based IoT system
for soil data collection

3.5.1 Concepts
IoT can be described as a platform where (physical and virtual) objects can be inter-
connected to generate and exchange relevant and valuable information to make logical
decisions. Objects can be humans, hardware, software and data. In recent years, IoT’s
popularity has escalated mainly due to its considerable capacity to sense a wider en-
vironment more precisely and create accurate information that enable us understand
our surroundings more. According to a study by [132, 133], more than 80 % of IoT
projects address or have the potential to address most of the SDG‘s [132]. IoT‘s po-
tential use in agriculture is also ranked among the top four application areas [134] with
a wide possibility for the technology to even contribute to food security. Three basic
components making IoT are: sensing or perceiving, communication or networking, and
data manipulating or application.

Sensing Component : this component consists of sensor or actuator objects that
are responsible to perceive or take action in the environment they are deployed
in. Objects can be of different internal properties or architectures and can
come from different vendors. In a specific instance, few to hundreds and even
thousands of objects can be deployed.

Networking Component : this is the component which allows objects to exchange
information with each other or to external entities. It defines set of communica-
tion protocols to allow information flow and ensure successful data transmission.

Application Component : is the component which defines services or actions to
be taken on the data collected by objects. The acquired data can be used
in various domains: from simple room monitoring to a complex industry or
medical applications. This component also defines and manages the behaviors
of actuator objects.
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Flexible and layered architecture is required to embrace the heterogeneity and growing
number of objects and communication protocols used with the advanced application re-
quirements. The International Telecommunication Unit (ITU) presents a four-layered
IoT architecture [135], as shown and summarized in Figure 3.6. Short discussion of
each layer is presented below.
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Figure 3.6: General IoT Architecture (Source: [135]

1. Device layer: A device is either an end node, which captures and transmits data
locally, or a gateway that buffers end nodes data and transfers it globally. End
nodes are capable of:

• Direct interaction with the communication network: gather, upload and
obtain information from the communication network without intermediate
component

• Indirect interaction: contact the communication network through a nego-
tiator and transmit gathered data

• Ad-hoc interaction: establish communication with other end nodes and
devices

• Sleep-n-wake: power utilization efficiency without compromising data col-
lection and transmission

Gateway capabilities are:

• Multiple interface support: Support both wired and wireless communica-
tions

• Protocol conversion: integrate heterogeneous device-level and network-
level communication protocols

2. Network Layer: is the backbone of the IoT communication and serves as the
brain of the whole system. It uses wired, wireless or satellite communication
to interconnect the lower level objects to the upper layer services and applica-
tions. The network layer defines and manages the how, when and whereabouts
of data acquisition and transfer from nodes to applications. Alternatives of
communication technologies and protocols exist that are used by this layer. A
brief discussion on the wireless protocols is presented in section 3.5.2. Reliable
communication, switching and routing as well as protocol translations are im-
portant tasks of the network layer, in addition to Authentication, authorization
and accounting (AAA) functions.
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3. Service and Application support layer: is the layer that maps low-level objects
to higher-level services. It handles data processing and storage requirements
of applications and services. It also provides data abstraction service to allow
system developers work on generic solution developments.

4. Application and business layer: is the high level component that manages end-
user interactions to the IoT system through query processing. Smart city, smart
home, precision agriculture are few examples of the application layers. The
layer offers the functionality of high-level analysis of the data received from the
objects and generates business models, graphs and flow charts.

3.5.2 Wireless communication protocols
One of the significant break-throughs of IoT is the advancement of the wireless commu-
nication technology. Radio frequency identifiers (RFID), short-range wireless commu-
nications such as Bluetooth and ad-hoc wireless sensor networks are examples of such.
Table 3.2 summarizes the wireless technology used in IoT communication networks.
These technologies have low operational power and operate for a considerable amount
of time. However, most have short-range span and are commonly suitable for appli-
cations that address limited spatial coverage such as across buildings or rooms [136].
The Cellular wireless networks are other categories of wireless communication proto-
cols, which can address the wide range limitation. But, as IoT keeps growing and
more objects become connected, network traffic management and signal generation
becomes a concern for the usability of these protocols, as it is, and requires further
design improvements [137]. A rather recent communication technology, which aims to
fill in these gaps, is the Low-Power Wide Area Network (LPWAN).

Table 3.2: IoT enabling wireless communication technology Source: [135, 138]

Wireless
network WLAN WMAN WPAN WWAN LPWWAN

Wireless
technology WiFi WiMAX LR-WPAN Cellular LoRa

Standard IEEE 802.11 IEEE 802.16 IEEE 802.15.4 2G, 3G, 4G LoRaWAN

Operating
frequency 5–60 GHz 2–6 GHz 868/919 MHz,

2.4 GHz

2.4 GHz,
865 MHz,
2.4 GHz

868/900 MHz

Date rate 1 Mbps–
6.75 Gbps

1 Mbps–1 Gbps,
50–100 Mbps

40–250 Kbps,
1–24 Mbps 50 Kbps–1 Gbps 0.3–50 Kbps

Transmission
range 20–100 m < 10 km 8– 20 m Entire cellular

area > 30 km

Power
consumption High Medium Medium-Low Medium Very Low

Cost High High Low Medium High
Operating life Years Hours up to 2 yrs Hours 10–20 yrs

LPWAN is a collection of various low-power, long-range wireless communication
protocols with typical area coverage up to 100 Km, using gateways as a relay [139]. The
downside of such technology is its limited data rate and thus suitable only for services
with infrequent and small data exchange requirements, and is consequently expected
to connect a wide domain of IoT applications. Parking, agriculture and environment
monitoring are some typical applications benefiting from LPWAN. The technology is
either proprietary or open standard and runs on both licensed and unlicensed radio
frequency (RF) spectrum. Some of the well-known LPWAN technologies are:

SigFox Is a forerunner in the LPWAN technology and released in 2009. SigFox is a
proprietary platform and runs only in specific regions where the network opera-
tor exists. It uses the ultra-narrow-band (UNB) channel with a distance coverage
of up to 50 Km and transmits data over the unlicensed spectrum with frequency
of 915 MHz in US and 868 MHz in Europe [140]. It has weak bi-directional
communication and suitable only for one way communications. SigFox can be
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an appropriate choice for applications with small (12 bytes) and infrequent data
transmission requirements [141].

Weightless Is a true open standard narrow-band LPWAN protocol in the Sub-GHz
unlicensed spectrum with possible support to licensed spectrum as well. It has
an adaptive data rate to maximize battery life but a limited distance coverage of
less than three and five Kms in urban and rural environments, respectively [142].

Long Range Wide Area Network (LoRaWAN) Is a technology with wider spa-
tial coverage and operates only in the unlicensed spectrum at various car-
rier bandwidth. It defines different implementation designs and supports bi-
directional communication through which nodes can receive and send data, as
required [143, 144].

Symphony Link Is a standard with guaranteed message receipt. It supports dy-
namic data rate and has no communication frequency limits, enabling nodes to
transfer data whenever required. Another advantage of Symphony link is its fair
and balanced link budget for all nodes in the network, regardless of their distance
from a gateway,thus, suitable for large area coverage communication [144].

Table 3.3 presents a summary of the technology.

Table 3.3: LPWAN Communication Protocols

Name LoRaWAN SigFox Weightless Symphony Link
Source Alliance Proprietary Alliance Alliance
Node LoRa SigFox LoRa

Security AES, MCI AES, CMAC AES AES
Frequency 433/868/915 MHz 868/962 MHz 400 MHz–1 GHz 150 MHz–1 GHz

Transfer rate 300 bps–
50 Kbps

Upload: <
300 Kbps,
Download:

8 bpd

100 bps–
10 Mbps Adaptive

Packet size User defined 12 bpd 10–20 bpm 256 bpd

Range
Rural:15–

50 Km, Urban:
2–5 Km

Rural:
30–50 Km,
Urban:
3–10 Km

up to 10 Km Flexible

Modulation CSS BPSK DBSPK FH, AF
Status Deployment Deployment Introduction Introduction

Duty cycle 1 % 1 % 1 % NA

3.5.3 Wireless sensor network in agriculture
Different implications of IoT exist for developed and developing countries. Therefore,
it is important to develop an appropriate implementation strategy for each context and
according to what exists on the ground. This includes connectivity technology, cost
implications, technical opportunities or limitations, cultural contexts and the intended
impacts. For remote and rural areas, where infrastructure exists but it is commonly
of poor quality, IoT deployment is rather difficult. More cost-effective, robust and
power-efficient solutions such as Wireless Sensor Network (WSN) are of importance
and needs to be integrated into the IoT [145]. Essentially, the LPWAN communications
contribute to improving both IoT device connections to the Internet and the overall
efficiency of the IoT application operation in such resource-constrained environments.

A WSN is an IoT architecture for a wireless network of spatially scattered nodes
with embedded sensors for closely monitoring physical and environmental conditions [146,
147]. It supports up to hundreds or even thousands of nodes in a single setup which
can communicate among themselves or the gateway, through wireless communication.
The gateway serves as a sink for nodes-transmitted data and transfers the data to a
network server. A typical node in a WSN is shown in Figure 3.7. As can be seen, a node
has a radio transceiver with an internal antenna for communication, a micro-controller
board which interfaces with sensors, and a power unit which is mostly a battery. a
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node can also have extra elements like power generator, mobilizer and a location finder
to add external power source, location knowledge and mobility feature [148].

micro-controller Is the component with sensing and processing units. The sens-
ing unit in turn consists of an analog signal sensor and analog-to-digital con-
verter (ADC), for analog-to-digital or vice versa conversion. The processing unit
comprises a processor and storage element for processing and storing data and
program.

Transceiver Connects the node to a network through a radio frequency (RF) and
internal antenna. It converts data to radio waves for the data to successfully
propagate and reach to the destination. The radio spans mostly short-range
of about 100 meters and low data-rate, about 10–100 Kbps. Better range is
obtained through additional external antenna.

power Unit Is the energy source to the node and ensures prolonging network lifetime
at the cost of lower throughput. Rechargeable batteries, capacitors and solar
energy are common sources of power. In a typical outdoor setup, end node
operates on batteries while a gateway node requires a direct supply.

A WSN node can be in one of these three modes during the life-cycle of the network:
sleep, active and idle. Sleep is when the node is doing nothing and saving power;
active, when it is engaged in data transmission (uplink) and idle is when the node is
receiving data from others (downlink) [149].

 

 

Figure 3.7: Typical end node in WSN

The WSN is receiving substantial attention in agricultural research works indi-
cating the usability of the technology for such requirements including crop manage-
ment, soil monitoring, irrigation management and precision agriculture, in general [].
However, large-scale implementation of the WSN for outdoor investigations are very
limited, which pinpoints the need for both empirical and engineering research works in
this aspect. Based on our findings, most works are experimental, either in a controlled
environment such as gardens or greenhouses and with few number of sensor nodes im-
plemented through simulations. On the other hand, LPWAN technology promises a
lot to offer, which are all to the advantage of large-scale data acquisition and process-
ing schemes, implying more is needed to be done to fill the gap. The fact that most of
the works targeted developed countries also adds to the extended work required on the
usability of such technology to create fair and equal access to all. Only few works exist
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on the use of the WSN technology in the developing countries, particularly none for
SSA, despite the fact these countries are constrained with agriculture-related data and
have also poor infrastructure for such data acquisition. It is to our strong belief that
the LPWAN technology can play a significant role to fill this infrastructure gap and
contribute towards improved livelihoods of a society where land degradation and food
insecurity is prevalent. Accordingly, this work, to best of our knowledge, is the first
attempt to set up a large-scale WSN, using LoRaWAN protocol, to monitor soil prop-
erties at farm fields in remote areas in a developing country. A WSN is advantageous
for such cases and fits well to rural areas as it has minimal infrastructure requirement
such as power supply and Internet connection and also less human involvement.

3.5.4 Operationalization: Approach and workflow
AWSN-assisted IoT architecture is proposed for farm-field soil data collection to assess
the spatial and temporal variability of soil. In particular, this work aims to deploy
a LoRaWAN-based WSN for soil moisture and temperature monitoring. A general
overview and workflow of the proposed work are shown in Figure 3.8 and Figure 3.9
as follows.

Application Layer

Backhaul  Layer

Wireless 
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Register/ Subscribe

MQTT

WSN

TCP/IP

TCP/IP

LoRaWAN

Register/ Publish

WiFi

Cellular

MQTT

Figure 3.8: System architecture: WSN-based IoT soil monitoring system

As can be seen from Figure 3.8, the proposed system has four sub-components:
Sensing layer, wireless communication layer, back-haul layer, and application layer.

1. Sensing Layer: LoRa nodes with off-the-shelf soil moisture and soil temperature
sensors are setup across farmlands. The sensors are placed at depth variations of
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Figure 3.9: Workflow diagram: WSN-based IoT soil monitoring system

20–80 cm below the ground surface. The micro-controller of the node converts
the sensor data to digital form, controls the frequency of readings by the sensor
and time-stamp for transmission to the gateways. The location of each node
is captured through a separate GPS device during installation. This enables
proper identification of the spatial-temporal dynamics of the soil. To validate
and cross check the quality of sensor data, laboratory soil tests will be conducted
at some intervals. As soil exhibits variation in space and time, a well-calibrated
sensor that smooths such variability and obtains accurate measurements of water
content will be utilized. Sensors will be calibrated with site-specific soil sam-
ples, validate their measurements with laboratory obtained findings and perform
proper adjustments prior to deployment.
Volumetric water content (VWC) and water potential (WP) are the two impor-
tant factors to describe the moisture level of a soil. VWC measures the amount
of water found in some volume of soil and can be useful in fertigation manage-
ment, soil health monitoring and water balance studies [150]. WP, on the other
hand, indicates the energy state of the water in the soil and can be of impor-
tance for monitoring water movement, precipitation level or water availability
for plantation in the soil [150]. In this work, Decagon 5 TM sensors will be
used to measure the VWC of a soil and determine its moisture level. The sensor
also has a thermistor in thermal contact with the sensor tips to read the soil
temperature. These sensors use dielectric permittivity measurement, through
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electromagnetic field computation, to determine the VWC of a soil. A 70 MHz
oscillating wave is supplied to the sensor tips that charges based on the dielectric
amount in the soil. The stored charge is taken as proportional to soil dielectric
permittivity value and generated as output. Further details about the Decagon
5TM sensor can be found on the manual [151]. The raw dielectric permitivity is
then converted to VWC using the Topp equation [151, 152], which is specified
as:

VWC = 4.3 × 10−6ε3
a − 5.5 × 10−4ε2

a + 2.92 × 10−2εa − 5.3 × 10−2

where εa is the dielectric permittivity of the soil and is between 2–7 [151]
2. Wireless communication (WSN) Layer: LoRaWAN communication protocol is

used to establish connection between nodes. Nodes are configured for efficient
power use but with limited down link rate. Such implementation might not be
suitable for applications with interactive and continuous data flow requirements.
However, since the aim of this work is to acquire soil data from ground over
time, no significant communication is needed top-down. Moreover, nodes will be
configured in sleep-more wake-up-less mode where node-gateway communication
is initiated once a day for efficient power utilization. This is also due to the fact
that soil properties do not significantly vary over a short period of time and
continual frequent monitoring of a soil results in better understanding of the
soil over time than any single measurement. Thus, the adopted approach fits
well to the task requirements of this work.

3. Back-haul communication: The back-haul layer manages the Internet communi-
cation between the LoRa gateway and the network server for sensed data trans-
mission. Since the area of interest for this work is a remote rural area with no
or minimal communication infrastructure, we will explore possible transmission
options to successfully transmit the sensed data to a network server. Cellular or
satellite communication link will be considered emphasizing cost-effective and
reliable connectivity over the TCP/IP network protocol. The network server also
handles network functionality including routing of data between nodes and ap-
plication, schedules communication sessions and manages gateway status [153].
The Message Queue Telemetry Transfer (MQTT) communication protocol is
used over the TCP/IP network protocol to achieve such functionality. The
MQTT facilitates gateway-application communication through a publish/sub-
scribe method. The things network (TTN) network server will be considered for
the MQTT back-end host.

4. Application Layer: manages application definitions and data usability func-
tionality. The business model for the soil monitoring system including data
visualization, pre-processing and analysis are all defined in this layer. A tem-
poral data of over two years will be collected, requiring a time-series persistent
data management and monitoring capability. Accordingly, the PostgreSQL data
management system is identified appropriate to use.

The general architecture of the proposed system is presented in Figure 3.10. The
overall communication of the network is broken into four distinct levels:

• Sensor-to-node: wired communication between sensors and LoRa nodes to ac-
quire ground data.

• Node-to-gateway: LoRaWAN wireless communication to exchange information
once a day over the entire monitoring duration. The gateway uses external
omnidirectional antenna and establish a reliable communication over a wide
area.

• Gateway-to-network server: defines the interaction between the gateway and the
cloud in IoT architecture. This communication enables integration of the WSN
with the Internet and makes the data acquired through the WSN accessible to
the world. Wireless TCP/IP protocol is used to establish this communication.

• network server-to-application server: this communication also uses the TCP/IP
communication protocol over the wireless connection. The network server trans-
fers gateway uploaded data to respective applications through appropriate ap-
plication technology. MQTT is used to provide this interaction. MQTT is a
topic-based publish/subscribe open protocol that facilitates communication be-
tween applications and nodes [154]. Soil moisture and temperature readings
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are defined as topics in which communication is established on. The gateway
then publishes data in the topics, to be retrieved by the application interface,
through subscription. The MQTT broker runs on the network server and man-
ages smooth communication [155].
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Figure 3.10: Conceptual diagram: WSN-based IoT soil monitoring system

3.5.5 Summary
WSN has an immense opportunity to acquire accurate and real-time in-situ data.
Most developing countries have significant financial and communication limitations to
deploy technological interventions and monitor crop productions at farm-field level.
This work is an attempt to fill this gap by providing a long-range, power-efficient,
outdoor and (near) real-time soil monitoring system with reasonable cost and minimal
maintenance requirements. WSN based on the LoRaWAN protocol is chosen as suit-
able to obtain information that answers our research hypothesis. The system aims to
cover smallholder farms in rural Ethiopia. In-door and experimental applications and
simulations of a WSN have shown to be successful in most aspects. IoT has also proved
to be robust for applications in urban areas where uninterrupted power and commu-
nication supply exists. However, deployment of the network in a harsh environment
like agricultural fields might be a challenge, unless careful design and implementa-
tion strategy is applied. Environmental and technical parameters that affects efficient
communication will be assessed to determine optimal node and gateway distributions
with minimal data loss rate or noise interruptions. Detailed design considerations and
nodes deployment scheme is further discussed in section 3.9. In addition to soil data,
the work also aims to assess power consumption, transmission delay, signal strength,
link quality ,fault identification and tolerance of the deployed network. As such, em-
pirical analysis on the performance of the network will be conducted. Experimental
assessment of the spatial, temporal and energy characteristics of the network will help
to evaluate outdoor wireless sensor network implementations and improved designs.

3.6 Participatory soil macro-nutrient analysis
3.6.1 Concepts
Soil is one of the most significant attribute for better farm productivity and, thus, food
security. Soil tests are commonly carried out in laboratories far from farm fields, where
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farmers are unable to frequently travel. The cost of these tests are also unaffordable by
most farmers, holding them back from checking the health and nutrient level of their
field. Local agricultural extension workers also do not have this data unless a country-
wide study is conducted, and this is infrequent. As a result, up-to-date soil data is
uncommon, especially in developing countries. On the other hand, most of Africa’s
soil is reported to be old and infertile, hence, less productive [156]. Sustainable soil
management is thus crucial to keep pace for better yield and reduced land degradation.
Sustainable soil management, however, shall be based on various soil properties which
significantly vary in space and time; regular maintenance and timely communication
of such variations to stakeholders of the agri-chain is required for change to take place.
Doing so is resource-intensive and requires substantial and recurrent investments which
can often not be afforded.

Alternative and cost-effective methods are required to fill this gap. Remote sens-
ing and satellite imagery system is one option in this context [156]. Alternatively,
mobile soil testing kits can be more appropriate for smallholder farmers at remote
farm locations. In particular, self-operated and easy-to-use soil test kits can be of
more importance. This can help farmers to observe and better understand their soil,
regularly monitor their farms and improve farm management practice or take appro-
priate improvement actions. Such knowledge also helps farmers to regulate the input
amounts they use on the farm, which in turn assists in improved crop yield and resource
efficiency. It is also evident that crops will be more nutrient-balanced.

The usability of such soil testing kits, however, is limited and mostly used by farm-
ers in developed countries. This is due to low awareness and limited distribution of
such tools. The low literacy rate of smallholder farmers in most developing countries
also contributes to the limited use of these kits, as some training and careful interpre-
tation of results is required. If soil test kits are combined with easy to use, localized
and efficient analysis platforms, farmers and agriculture extension workers can easily
conduct the analysis at their pace and fulfill the information requirements regularly.
Building the capacity and knowledge of the local communities on soil and environ-
ment management practices by creating an engaging environment is one way to fill
the information gap and increase the usability of mobile test kits. Citizen science is
recommended as one option for a timely collection of soil data [156].

Citizen science or public participation in scientific investigations is not a new con-
cept. It has been increasingly advocated as a means for scientists to address large-
scale data limitations [157–159]. Citizens voluntarily serve as sensors and provide
information about surroundings, trends, past events and more, which can be further
investigated by researchers to produce usable information. Particularly, environmen-
tal monitoring and observation can benefit highly from citizen science as it can offer
real-time, in-situ data about a situation. Thus, it is vital to establish collaboration,
participation and communication between scientists and the community. In recent
years, the participation and involvement of citizens has shown tremendous growth due
to technological proliferation: social media, interactive web interfaces, smart sensors
and scientific measurement tools and smart phones. Citizens have become more envi-
ronmentally aware and big data is generated that can be used to add scientific value.
A number of research projects have also showcased the impact of citizen science on
such environmental monitoring [160]. When the data collected by citizens involves
spatial data such as location, it is termed as geographical citizen science [161]. This
voluntary participation has been given various classifications based on the service and
involvement of volunteers [162]. Active or passive classification describe citizen sci-
ence as intentional or an unconscious participation of citizens, respectively. Another
classification is that of implicit versus explicit, which defines the direct and indirect
geo-spatial data provision by participants, respectively.

No common framework or tools exist for citizen science research approach as every
work has its own specification and needs for mode of participation [159]. However,
voluntary and sustained engagement of citizens is what every citizen science aspires in
the process of the scientific investigation. It is natural for participants to be subjec-
tive or less accurate during measurements, unless concise procedures are defined and
proper guidance and follow-up is used. Thus, it is also required to apply a reliable
methodology that is easy to use for participants, yet, at the same time, generates
comparable information with standard measurements.

According to [163], three common approaches exist to citizen science projects:
Contributory, Collaborative and Co-created.
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Contributory approach is the most commonly practiced approach in which citizens
collect data using precisely defined protocols by the researchers and with limited
participation in the data analysis.

Collaborative approach is when citizens are also involved in re-structuring the re-
search design, data analysis and result dissemination to others. Participants are
involved actively in some research activity such as analyzing samples, interpret-
ing data and inferring conclusions. Communicating with the community can
also be a task that citizens may be involved in. They may also assist in design
and refinement of data collection protocols.

Co-creation approach is a bottom-up approach in which participants actively en-
gage in the research design and are involved in most parts of the scientific
investigation life cycle. This approach is also known as partnership approach.

The difference between these approaches is summarized in Table 3.4, where Y
stands for full public participation and y for partial public participation in the step.
It is often the case that a hybrid of these approaches is implemented. However, which

Table 3.4: Models for public participation in scientific research:
(Source: [163])

Scientific process step Contributory
project

Collaborative
project

Co-creation
project

Problem definition Y
Requirement analysis Y
Hypothesis formulation Y

Data collection
methodology design Y

Data collection Y Y Y
Data/sample analysis y Y Y

Data interpretation and
synthesis y Y

Dissemination of
findings y y Y

Execution of actions
based on findings Y

Discussion of results Y

approach to adopt depends on the requirements and the spatial temporal extent of
the work. For instance, a contributory citizen science approach is more suitable when
a large volume of data covering wide geographical locations is collected. On the other
hand, if repeated measurements of a specific target of smaller domain is priority, a
co-creation approach is more appropriate [164].

3.6.2 Operationalization: Approach and workflow
Prior research has presented the micro- and macro-nutrient deficiencies of soils in
the Amhara National Regional State (ANRS) and recommended re-vitalizing actions
such as application of fertilizers [165, 166]. This, however, needs to be supported by
frequent diagnostic analysis as the presence of nutrients varies temporally. Research
works involving the community for such continual and spatially distributed data collec-
tion process is thus required. Local and regional-level agriculture and natural resource
management offices, farm extension workers, national and international aid organi-
zations, research institutes and the farmer community, as a whole, needs to come
together and work hand-in-hand to improve the status of the soil. Easy-to-use, afford-
able and robust tools can be used to bring such collaborations for soil data collection
and analysis.

This work proposes a collaborative and co-created digital citizen participatory ap-
proach to collect and analyze soil macro-nutrient data at farm field. The work also
follows an active and implicit geographical citizen science approach in which partici-
pants capture and transmit geographical data of samples taken. Strong collaboration
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needs to be surfaced for successful realization of this objective sustainably. Accord-
ingly, possible local, regional and national collaborations are explored and identified
before the actual work commences. Figure 3.11 indicates the possible collaborations
lines of stakeholders.
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Figure 3.11: Potential stakeholders and role identified for participatory data
collection

The workflow of the system is categorized in two phases: the preliminary phase
and the operational phase.

In the preliminary phase, campaigns and outreach activities are conducted to create
awareness on the research and of the need for active involvement of the aforementioned
stakeholders. The aim is also to explore and refine the stakeholder list and their pos-
sible roles. Volunteer facilitators from agricultural extension offices, aid organizations
and higher academic institutes are recruited and first round training and discussion will
be conducted. Knowledge exchange and methodological refinement may also happen
at this stage. A second round training is offered, together with trained facilitators,
to recruit volunteer citizens for participation. High school students are targeted as
volunteer participants for various reasons including knowledge build and environment
awareness. The trainings are designed to be interactive and explanatory, covering
issues on safety procedures, sample selection and soil macro-nutrient analysis using
off-the-shelf test kits. Schools and extension offices are then equipped with lab kits to
be distributed to participants during field visits. A lab kit consists of NPK test kits,
safety procedures and equipment, data collection and analysis guidelines and required
field equipment. Volunteer participants then work closely with the researchers and
facilitators and design convenient field visit time to conduct the investigations. The
spatio-temporal execution of the investigation needs to be designed carefully consid-
ering the pre-cropping, growing and harvest seasons. The frequency of field visit will
also be agreed upon and decided through discussion during this phase.

In the operational phase, participants visit pre-identified sample areas, record the
soil type and texture, collect soil samples, prepare soil composites and conduct the
NPK analysis, following the developed procedures and guidelines. Each sample taken
will be location and time-stamped to ensure the reliability and also record the temporal
variability. Once the soil analysis findings have been obtained, participants translate
the results to a spatial representation using a digital camera on a digital device used,
and upload the data. The system acknowledges every recipient and allows partici-
pants to submit a maximum of three such data elements per sample point. An offline
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standard of data transmission platform will be designed and integrated in the client
machine, onto which participants can upload content frequently. The uploaded data
will then be synced with a central repository when an Internet connection is available.
Doing so avoids the connection barrier commonly found in rural areas while creating an
opportunity to acquire data regularly. The system rewards participants based on their
participation, which enhances participants’ motivation while also creating chances to
recruit more volunteers, hence ensuring sustainability of participants. The workflow
of the system is shown in figure 3.12.
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Figure 3.12: Workflow diagram for participatory soil data collection

Several work exist that utilize a web platform for participatory data collection and
transmission purposes. The open data kit ODK platform [167], Sapelli Platform [168],
and FPIC [169] are worth mentioning in this context.

From a software engineering perspective, a system of four tiers is designed with a
layered architecture of model view controller MVC and persistent data management
approach as shown in figure 3.13. The deployment follows a client-server architecture
of thin clients, with views deployed on mobile devices, while other layers are maintained
at a central server. The system implementation is done using appropriate and freely
available open source tools.

Model Layer holds all business definitions and data management component of the
system. This layer controls user management, data classification and data pre-
processing tasks, in addition to responding to user needs.

Controller Layer is the service layer of the system and acts as an interface between
the model and end users. In addition, this layer holds a temporary buffering
component that responds to user requests at times when a connection cannot be
established with the model. The buffer is a mere replicate of the repository of
the model layer which is synced once communication is established. The model
pushes data to the buffer frequently to ensure reliability.

View Layer provides the user interface as interaction platform for users. It presents
the form in which data is entered by users, once proper authentication is passed.
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Figure 3.13: System architecture diagram for participatory soil data collection

It also displays results returned by the model layer. The user interface is de-
signed so that minimal knowledge of interaction is needed and it supports the
local language of participants. Most part of the survey displayed is populated
automatically by the system, reducing the data entry requirements from partic-
ipants.
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3.6.3 Tools and methods
An iterative object-oriented (IOO) system development approach is used throughout
the life cycle of the system. The system construction is broken down into phases:
requirement analysis and specification, system design, system implementation, system
deployment and testing, and system maintenance. Tasks are executed iteratively go-
ing back and forth between phases, as needed. As part of the requirement analysis
focal group discussions, interviews and closed question surveys are conducted and ex-
pert knowledge is acquired. On the design phase, tools needed for soil NPK testing,
safety procedures, samples, database and other sub-systems are designed. For the
implementation, Python programming language is used with the Django framework
to support the MVC architecture. The persistent data management is implemented
using PostgreSQL database system for its flexibility and strong support of spatial data
and queries. In each phase, deliverable are produced using appropriate IOO tools.

3.6.4 Summary
The involvement of citizens in continuously monitoring their environment has sig-
nificant impact to create better understanding and knowledge among members. Soil
macro-nutrient analysis often requires expensive lab works and takes considerable time.
A system that integrates soil test kits with an appropriate participatory platform can
be an alternative for feasible and regular soil monitoring and analysis. In addition
to the continual and real-time data flow, this approach also assists in technology
transfer to the community. It also is a tool for ‘democratization of science and tech-
nology’ [170]. With such a system, citizen knowledge and understanding of the farm
soils can be improved with possible cost-effective diagnostic actions to take effect. The
direct involvement of the community also has impact on acceptance and usability of
further research in the area. However, active and sustained volunteer participation
of citizens is crucial for such system to be successful. Strong collaboration among
stakeholders is also required to run such system consistently.

3.7 Agricultural advisory system
3.7.1 Concepts
Soil is the basis for crop growth: a crop’s nutrient absorption ability is determined
by the soil’s water retention capacity. The soil texture also affects air and water
movement for crops to use and much more. It is thus important to understand which
soil is suitable for which crop type. The inherent properties of a land also needs
to be aligned with its intended purpose, which helps to achieve better productivity
while keeping the land healthy. One of the main goals of agriculture production is
to get maximum yield with minimal operational cost or efficient use and applications
of such resources. Smallholders invest on their farm and wait until harvest time to
know how much it pays off. This hinders the farmers from exploring market and
income possibilities for high or low productions. There is also significant yield gap
most smallholders are faced with. Land suitability analysis can help to match crops
with appropriate soil types. It can be used to understand the inter-dependency that
exist along the crop production chain: spatial references, crops, weather, soil, farm
practices and other inputs. Estimation of crop yields made before harvest is also
essential to inform farmers on required mitigation actions and empower stakeholders
with information for crop management and other logical business decisions. A properly
designed knowledge base that integrates all these information is required for better
advisory and decision support in the catena. Such systems are particularly significant
in smallholder farmlands which are inaccessible or where advisory professionals are
scarce, both in quality and quantity. However, the efficiency of such a system heavily
relies on the availability and quality of data sources. In developing countries, however,
data scarcity is typically severe while timely yield estimations and crop-land match
is significantly required. Accordingly, there is a need where all possible data sources
are explored exhaustively. A holistic approach that integrates primary and secondary
data sources, experts and local knowledge is thus needed.

Data mining and machine learning algorithms have been making a significant con-
tribution in this context. Machine learning (ML) systems use the concept of learning
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from experience and train a machine to get an optimal estimate of a final outcome.
Artificial Neural Network (ANN) is a machine learning algorithm that represents and
processes concepts based on the human brain’s neural representation [171]. It models
input-output interactions and correlations as interconnected neurons of the human
brain and mimics their functionality. Such relationships are defined through the anal-
ysis of a large number of input and output scenarios, which are then used to predict
future instances. ANN supports one or more layers with activation function, con-
nected in such a way that every connection signals new message and thus easily iden-
tify correlations between inputs to generate unseen outputs. The connected objects
are referred to as nodes while the connections are known as synapses [97]. Known
values are presented as input nodes, which are linked to unknown and inferred hidden
nodes. Each link has a weight coefficient, which is generated to minimize the error
value between desired output and known value of the model using back-propagation
algorithms. There can be one or more such connections depending on the data hier-
archies and level of precision required. An ANN with two or more layers between the
input and output layers is referred as Deep Neural Netowrk (DNN) [] Data sets from
different and heterogeneous sources can be fed to an ANN model at different levels and
new information can be inferred precisely. ANNs are capable of processing, classifying
and estimating a situation, if adequate and accurate data is provided. Their non-
linearity, inferring unknown knowledge, adaptivity, fault tolerance, generalization and
input-output mapping also renders them preferable to such multi-variable dependent
operations [171].

3.7.2 Operationalization: Approach and workflow
In this work, land suitability analysis and crop yield estimation for smallholder farm-
lands are studied as use cases using ANNs algorithm by integrating outputs of previous
objectives. Interactions between the spatial and temporal data layers produced are
modeled to determine the most likely factors that could limit crop growth as well as
the level of suitability of the soil to selected crops. Two crops growing in the study area
are targeted for study based on their socio-economic significance. The obtained in-
formation can then be used to make comprehensible recommendations regarding farm
management and other input specifications. ANNs are recently getting more attention
in research works of classification and accurate predictions [172, 173]. We propose to
develop a model for yield forecasting and land suitability based on temporal agricul-
tural data, soil type, texture, moisture, temperature and NPK levels, farm input and
management practices and weather parameters and using appropriate ANN.

Land suitability is a method of assessing possible uses of land for various pur-
poses [174]. Land suitability analysis, in our context, is a measurement and evaluation
of the conduciveness of a farmland, in terms of the soil’s moisture, temperature, tex-
ture, type and NPK level, for a specific crop to grow. Knowledge of these parameters
can assist in management of water resources, identify and select appropriate crop type
and adjust fertilization inputs, and subsequently maximize crop yield. In particular,
it is the aim of this work to analyze the interplay between soil moisture and macro-
nutrient dynamics with plant physiology. Soil is classified based on the aforementioned
chemical and physical properties and associated with crop requirements to predict its
suitability. The crop type, its root depth, water requirement and growing duration
are data required to know a crop. The soil data is acquired through 3.5 and 3.6 while
remote sensing, experts and literature are consulted to identify the specific-crop re-
quirements. The Sen2Agri system is used to retrieve and analyze satellite images to
identify crop types and vegetation index products. This will give an insight in the most
dominantly cultivated crops and based on the findings, crops to be considered for the
study are selected. The in-situ data produced from this work is then integrated with
all the mentioned data for knowledge base construction and to monitor the impacts
of soil properties on the growing progress of crops over the cropping season. These
attributes are used as inputs to the ANN model, which will be trained with 85% of
acquired data while the remaining 15% is used for validation. The final outcome of this
model, which is a nominal classification of suitability level, will be used as input to the
yield estimation model. Other parameters to be considered for the yield estimation
model include weather parameters, elevation, farmland size, input use and other farm
management practices. The weather data will be obtained from local, national and
international weather stations. Experts and farmers are surveyed to further refine the
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target crop types of the study. The economic significance and productivity level of the
crops is considered in this respect. Based on interactions observed and the crop status
data obtained, in-season optimal crop-yield estimation will be formulated through the
model. Formulating the yield estimation and land suitability context into classification
problems, ANN technique can be used to produce accurate findings [175, 176]. The
outcome of such system can be used to assist on possible informed and logical decision
makings. Figure 3.14 presents the workflow of this objective.
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Figure 3.14: Workflow diagram: Agircultural expert system

3.8 Study area
The Beshilo basin is found in Amhara National Regional State (ANRS), located be-
tween 38.2 degE–39.6 degE longitudes and 10.8 degN–11.9 degN latitudes. The basin
is defined around Beshilo river, one of the largest tributaries to the Blue Nile River.
It runs over 16 woredas from three zones in the region: North Wollo, South Wollo and
South Gondar [177]. The altitude of the basin ranges from 1170 masl to 4260 masl and
covers an area of around 13,000 km2 [178]. Figure 3.15 shows the topography of basin.
With an annual average rainfall range of 825–1470 mm, an annual temperature range
from 13 ◦C to 30 ◦C (maximum) and -10 ◦C to -15 ◦C (minimum) and annual poten-
tial evapo-transpiration (PET) range of 1060–1920 mm, the basin holds four common
agro-climatic zones (AEZs), as seen in Figure 3.15. The Dega AEZ encompasses the
highlands with elevation range of 2000–2800 masl, cool and humid climate, average
annual rainfall from 1200–2200 mm and average annual temperature of 12–16 ◦C. The
Weina-Dega AEZ describes the midlands at around 1500–2000 masl elevation, cool and

40



!(

!(

Liwicho

Degamote 021

Goro Mender

Atnt Mesberiya 030

Kolamote 020

Alanshana Werkaya

Kuta Ber

Dese

Kutaber

Dessie Zuria

517912.118082

517912.118082

527912.118082

527912.118082

537912.118082

537912.118082

547912.118082

547912.118082

557912.118082

557912.118082

567912.118082

567912.118082

577912.118082

577912.118082

587912.118082

587912.118082

597912.118082

597912.118082

12
03

74
4.09

59
16

12
13

74
4.09

59
16

12
13

74
4.09

59
16

12
23

74
4.09

59
16

12
23

74
4.09

59
16

12
33

74
4.09

59
16

12
33

74
4.09

59
16

12
43

74
4.09

59
16

12
43

74
4.09

59
16

12
53

74
4.09

59
16

12
53

74
4.09

59
16

12
63

74
4.09

59
16

12
63

74
4.09

59
16

Tenta
Sayint

Simada

Mekdela

Wadla

Kutaber

Amba Sel
Dawunt DelantaTach Gayint

Meket

Dessie Zuria

Lay Gayint

Legambo

Guba Lafto
Esite

Gidan

Dessie

Were Ilu

Source:EthioGIS2

Bounary 
Rivers

± ±

± ±

1:2,052,626

1:1,893,707

 Dega
 Kolla
 Weina Dega
 Wurch

1:555,769
Kebeles
Sites

!( Town

A B

C D

E

1:23,173,505

1,202 - 1,700
1,700 - 2,200
2,200 - 2,700

2,700 - 3,200
3,200 - 3,700
>3700

±

Figure 3.15: Beshilo basin and selected woredas

sub-humid climate with average annual rainfall from 800 to 1200 mm and average an-
nual temperature of 16–20 ◦C. Kolla AEZ is a lowland area below 1500 masl elevation,
warm and semi-arid climate, average annual rainfall of 200 to 800 mm and average
annual temperature of 20–27.5 ◦C. Wurch AEZ covers highlands beyond 2800 m ele-
vation with cold and moist climate, 2200 mm average annual rainfall and ≤ 11.5 ◦C
average annual temperature [179] Most of the woredas in the basin are densely pop-
ulated, with more rural settlements and agriculture-dominated livelihood. Woredas,
especially of the South Wollo zone, are known to be least food-secure and many are
short of producers to even support themselves, all year long. The slightly small farm-
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land owned by farmers and the unreliability of the long-rainy season (Meher) attributes
to these poor farm yield. Most farmers of the region own on average 0.82 ha of land
and practice farming during the short (Belg) season [180]. This zone is also known for
sometimes with rigorous drought and often referred to as the “heart of the country’s
famine belt” [181]. Irregular and erratic rain fall, soil degradation and nutrient deple-
tion, small farmlands and crop pest manifestation have all hindered the productivity
of farmlands of the zone [182]. As a result, most households of the area have been
receiving food aids and other assistance from government and non-governmental aid
organizations [182].

As case study area for this work, purposeful sample selection is used and two
woredas of South Wollo zone have been selected from the basin. Soil moisture varies
in spatially and temporally. Soil texture, topography, weather factors, vegetation cov-
ers and farm management practices all affect this variability. These parameters also
vary among different AEZs while they tend to be relatively similar within. Thus,
the AEZ label can be used as deterministic of these variant properties and represent
all well [183]. Kutaber and Dessie Zuria Woredas have been chosen mainly because
of the representative AEZ distribution they have, the severity of the problems men-
tioned above and the relevance to address them and accessibility of the locations. The
woredas are known with bimodal rainfall pattern and two cropping seasons. The AEZ
distribution of the woredas is 63% Dega, 22% Woina Dega and 14% Wurch. A summa-
rized description of the two woredas is presented in Table 3.5. The cereals produced

Table 3.5: Kutaber and Dessie Zuria woredas summary

Summary Dessie Zuria Kutaber
Area 990 km2 1216 km2

Elevation (m) 2300–3500 1970–3100
Total population 156,679 201,433
Rural population

density 125per km2 164per km2

Major crop types Teff, Pulses, Barley,
Sorghum, Wheat source(FEWSNet)

Major soil types Leptosol, Cambisol,
Vertisol, source(EthioSIS)

Soil texture Sandy-loam source(EthioSIS)
Average annual rainfall 1150 mm 1083 mm

Mean annual
temperature 10.5 ◦C 14 ◦C

are mostly for own consumption while Khat cultivation is practiced to some extent as
cash crop [184]. Of all the area, about 37% (595 km2) is used for farming agriculture,
which is permanently cultivated and mostly rain-fed.

3.9 Sampling design and network layout
Both technical and environmental dimensions need to be assessed before establishing
an out-door WSN. Devices are resource-constrained, topography and other human-
induced factors can hinder better performance, various interferences can compromise
quality of data. These and other elements need to be considered. In this project,
the aim is to cover representative agricultural fields in the watershed and obtain soil
data all along. A single-hop star topology is the simplest arrangement of nodes in
WSN deployment where each end node directly connects to a central gateway. Such
design is suitable when few nodes exist and are distributed in a small-scale coverage,
less than 1 km. A multi-hop topology is much preferred if a wider area coverage is
required and several nodes are available, with considerable maintenance cost. In this
work, a two-tier star topology is proposed and nodes are arranged in a cluster format.
Nodes which cannot directly connect the gateway (GW) are referred as end nodes
(ENs) while nodes in close proximity to the GW are referred as controller nodes (CN).
ENs are clustered and connect to CN which in turn connects to the GW as shown
in Figure 3.16. Such an arrangement not only reduces signal loss over long-distance
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propagation, but also enables modular node management and maintenance, efficient
power use and minimal communication between gateway and end nodes.
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Figure 3.16: Sampling design alternatives

The design and sampling layout procedure is classified into tasks that are described
below:
Zonation Two clusters are initially defined, one per woreda of the study area: Dessie

cluster and Kutaber cluster. Three smaller clusters are then defined per outer
cluster, representing the three AEZs of the woredas. Accordingly, Zone 1 (Dega),
Zone 2 (Weina Dega), and Zone 3 (Wurch) are set in both Dessie cluster and
Kutaber cluster. We refer the reader to Figure ?? for the AEZ classes of the
study area. With in clustered strata, 36 sample fields are identified using 2 km
by 2 km grid sampling approach. These fields will be used as sample populations
for all activities of this project and nodes are placed randomly within each field.

Role Definition Nodes are designated different roles and responsibilities as EN, CN
and GW. EN collects and transfers data either to GW or CN. A CN receive
other nodes’ data and transmit it to GW, in addition to the normal sensing
task. Zones have at least one EN and zero or more CNs, based on the distance
from the GW. The GW node relays the received data to the cloud.

Distribution design With average 0.82 ha plot per household of the total of 595 km2

crop land of the strata, an estimate of 72,561 farmlands are found in the two
woredas. And for the selected kebeles, there are about 6,585 farmlands. And
from the above percentage ratio of each AEZ, a rough estimate distribution
of these locations can be made as follows: Zone 1 (63%): 4149, Zone 2 (22%):
1,449 and Zone 3 (14%): 922. This implies more nodes go to Zone 1, specifically,
16 nodes while 6 and 3 nodes are deployed in Zone 2 and Zone 3, respectively.
A geometric random graph model proposed in [185] will be used to determine
the maximum range for successful connection establishment between ENs and
a GW. According to this paper, given a finite area A, average nodal degree E
> 0 and nodes density n the connectivity radius is defined as:

r(n) =
√
A · (lgn+ ε · lgn)/(π · n)

For the GW, two modes of implementation are designed as shown in Figure 3.16:
(1) a GW is placed at a position equidistant to all zones and nodes directly
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connected to it. (2) a GW is placed at the center of each zone and connect
to nodes only in that region. In both cases, avoidance of obstruction of direct
line of sight to and from ENs or CNs and availability of direct power source is
also considered for the GW. It is thus required to place the gateway at higher
elevation, roughly 5 m above the ground. Since the interest of this work is in soil
data of farmlands, sensor distribution will be done only on farmlands. Nodes
are placed 1 m above the ground, avoiding unsuitable locations such as fallow
land and field boundaries. CNs are set in a zone only if the distance between
EN and GW exceeds r(n). Depth of sensor deployment is determined once the
crop requirements are identified.

Network Deployment Nodes and GWs are placed according to the design and
checked for their proper integration. The network is assumed to be static with
all nodes placed in a specific location and remain fixed in that position through-
out the application. However, with the empirical investigation, the location and
elevation of nodes can be reviewed and improved subsequently. The deployment
follows an incremental approach where one zone is setup first and its perfor-
mance is monitored. Considering the empirical investigation, the next zone will
be set, and so on.

Evaluation and Testing Both black box and white box testing is conducted on
the network to evaluate the proper functioning of hardware installation and
the system’s robustness and accuracy of the application designed. Empirical
evaluation is conducted on the overall performance of the design.

From a technical point of view, computational parameters such as range, through-
put and link-budget are considered for optimal implementation. Adjustment to the
network setup is carried out based on the received signal strength level (RSSI), and
power consumption. The adjustment will be both in azimuth and elevation of the
gateway position. While doing so, due consideration is given to the below.
Scalability Currently, we have available 30 nodes and 3 gateways for deployment.

The network is designed following an incremental approach and starts with a
single setup, but nodes and gateways can easily be added to or removed from
the network with no significant impact. The number of CNs is minimized to
the extent possible which reduced coupling. Ideally, the LoRa gateway is said
to support thousands of nodes. This functionality is evaluated in the empirical
investigation of this work as well.

Transmission Rate Continuous data reads from sensor nodes puts a high power
demand and significantly affects the lifetime of the network. On the other hand,
soil moisture and temperature do not significantly vary over short time intervals,
and this can be used as an opportunity to limit the data transmission rate. Thus,
minimal communication is aimed for but without compromising the amount of
data obtained. Hence, ENs collect data every hour but transmit to the GW
only twice a day and they hibernate for the rest of the time. This specification,
however, will be reviewed during the experimental evaluation phase so as to
achieve optimal transmission rate. An external memory with better access times
may be added to provide secondary storage and to alleviate the application size
constraints imposed by on-chip memory capacity of the nodes.

Autonomy : As the WSN is deployed in remote farm fields and far from the re-
searchers base, there is little expertise to frequently visit and maintain the net-
work. As such, the network shall operate autonomously and be non-intrusive
to farmers. To this end, and also for safety of the network, cables are cut as
short as possible and proper casing and covering is performed during installa-
tion. Moreover, embedded software carries an intrinsic risk of failure away from
’home’ and with proper identification of hardware, is used to remotely monitor
the network and also to easily identify faults.

The participatory soil analysis work is also conducted in the sampling area, taking
random points with-in. Kit hubs are set at selected high schools found in the study
area. Five level-one and two level-two high schools are found here. The level-two high
schools are used as kit hubs as they encompass our target audiences: grades 9–12.
Each kit hub is equipped with a soil test kit, which is a package of guidelines, bottles,
caplets, color charts, tubes, chemicals, shovel and a tablet for the result uploading.
The intended data collection and analysis is conducted once a month on a practical
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session of a course identified as close to this project activity. Dessie University is
a nearby higher education institute found in the study area, which runs agriculture
study, among other programs. Students and faculty of this department are identified as
possible collaborators to the mentioned field activity through training and facilitating
the kit use. In addition, agriculture development agents (DA) of local offices also
accompany the team in every field and data collection visit. The observation is planned
to be conducted over two years for a total of 16 field visits per school. The kit hubs
need to be re-filled with required equipment, as needed.

3.10 Data sources
The main purpose of this research is to establish a data infrastructure for soil data
collection and study the correlation between soil properties, the farm management and
farm productivity. Use cases of agricultural decision support systems are also produced
to showcase the significance of such analysis and the data acquisition system. In this
regard, additional datasets, both primary and secondary, are required. Moreover,
the performance and quality of the data acquisition system needs to be evaluated,
requiring base datasets. The table below presents a summary of the required datasets
and the possible sources.

Table 3.6: External data and possible sources

Dataset Description Data type Sources

Crop data

Dominant crop types,
crops characteristics,

socio-economic
significance

Primary/secondary

Central Statistics
Agency (CSA), FAO,

Literature and Experts,
Sentinel-2

Weather data

Climate data of the area:
Temperature, rainfall,
Precipitation, humidity,
evapo-transpiration

Primary/secondary
Ethiopian

Meteorological Agency
(EMA)

Potential
production

The possible production
of the land under

observation
Secondary Sentinel-2, Literature

and experts

Actual
production

Temporal yield statistics
of farm fields Primary CSA, survey and

literature

Topography map Geo-spatial
representation of the area Primary Satellite Imagery

Soil moisture Large-scale remotely
captured data Secondary Soil Moisture Active

Passive (SMAP)

Others Farm management and
inputs Primary/secondary

Survey, observation,
literature , experts,
report, repositories

3.11 Anticipated challenges and possible coping
mechanisms

In large-scale field work and in remote areas like ours, much can go wrong and we an-
ticipate various challenges, both technical and logistical. Deployment of the WSN, for
one, is susceptible to logistic, communication and human error issues. These include:

Lack of farmer awareness Since the network is deployed inside farmlands, estab-
lishing trust with farmers is a concern. With no experience of this kind of
technological interventions in the area, sincere discussion and information ex-
change to reach consensus is needed. An early deliverable in this context is
required as farmers will be more accommodating if this is the case. Moreover,
working closely with agriculture extension offices, local and regional government
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bodies, community associations and aid organizations found in the area, we hope
to minimize the challenge.

Lack of higher management awareness Crucial to address as the WSN uses the
free RF in the unlicensed spectrum and no well-documented regulation exists on
its usage. Through sharing neighboring countries’ experiences and with proper
information exchange, the information gap can be reduced and the matter can
be settled.

Incorrect sensor installation Since the sensors use dielectric conductivity of the
soil to measure soil moisture, interfering objects shall be avoided. In this context,
sample areas with minimal electric conductivity need to be determined prior to
implementation. Moreover, too tight and too wide holes affect the accuracy of
the sensor readings. Removal of air gaps is needed and extremely compacted
land surfaces shall be avoided.

Backhaul communication We use a cellular network for gateway to network server
communication. The gateway uses a direct power supply. Nevertheless, in re-
mote farming areas, disruptions of either happens frequently, and fall-back op-
tions are required. Thus, the gateway has a backup battery that operates for
at-least three hours a day when direct power is interrupted. Data store-and-sync
capability is also added to the gateway for temporary buffering during periods
of disruption. During a long outage, this allows to collect the information from
the buffer directly.

Network performance and data accuracy Sensor readings may significantly vary
when disturbance such as movement on the surface happens, especially with un-
stable soil. A human or animal can step on the sample point and affect the
readings. Proper installation points are identified and fallow or slope points
are excluded. A data validation and filtering scheme is used to clean outlier
readings. The network performance also depends on the line of sight (Los) and
absence of blockages between nodes. The gateway is thus, placed in a posi-
tion where minimal blockings exists and in a higher place to ensure better Los.
Literature indicate the potential of large distance coverage (up to 50 km) and
optimal power utilization (up to five years) achieved by the LoRaWAN WSN
protocol [186]. However, implementation of the protocol is in an early stage and
its performance evaluation is mostly indoors, controlled or simulation-based.
This creates a concern and requires careful design for large-scale outdoor de-
ployments. Continual monitoring and network maintenance is carried out based
on experimental findings and network performance improvement measures are
taken when needed.

From the participatory data collection and analysis aspect, some of the anticipated
challenges are the following.
Volunteerism Considering the literacy and livelihood status of the area’s popula-

tion, the recruitment of volunteers can be a bottleneck for the work. Most
farmers are illiterate and spend much of their time in farms, working the whole
day. Misconception on the objectives of the project may arise, and thus vol-
unteer participation may be low, which will jeopardize the work. To minimize
such risks, a collaborative research approach is envisioned. Possible collaborat-
ing governmental and non-governmental bodies are identified so that existing
public participation schemes are used. Local-level administrative entities and
agriculture extension agents are also of high interest in this respect. We also
target youths of the community, preferably school students aged 15–18 and re-
search institutes found in the area. The accessibility and local knowledge of the
selected population is crucial on top of the basic communication skills needed for
the work. The volunteerism can also be aligned to some school subjects taken
by participants, and secure participation. Care shall be taken, however, with
the quality of the data obtained (see next).

Data quality With soil analysis conducted by non-professionals and through test
kits, reliability and data quality are a concern. Faults in the kits used, sample
preparation error and analysis readings inaccuracy, the quality of the camera
used for spatial data generation and user’s operational accuracy can be some
causes. Training participants, detailed guideline and procedure preparation, and
proper calibration and evaluation of kits are foreseen countermeasures. With
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spatial and temporal stamp on every data acquired, the reliability of data is
evaluated with other submissions in close space/time proximity. Increased sam-
ple density is another mitigation scheme planned. The system allows multiple
entries of a single reading. System level data validation and cleaning is then
implemented to avoid any inconsistent readings. A pre-processing module is
designed which is trained with valid data and filters users’ readings accordingly.
Extension agents, volunteer school teachers and university students also play a
significant role to ensure the quality and reliability of the whole process. They
are considered as first level quality assurance agents.

Time investment A significant amount of time is expected to be spent by partici-
pants. Going to the field, collecting samples and conducting the analysis requires
considerable time, which might make participants less interested. We plan to
use parallelization and a team approach to address this requirement. Volunteers
work more as a team than as individual, and perform tasks in parallel. Sample
collection, composite preparation, soil testing and uploading results can all be
distributed within a team. A trade-off has to be made between time spent and
knowledge acquired, as the project’s indirect objective is also to install knowl-
edge and technology transfer to the community. The concept of collaborative
competition is another strategy planned to keep participants motivated in con-
ducting the research. A team competition in which teams are evaluated based
on the frequency of their participation and quality of process, with a reward
mechanism in place can increase participation rates.

Sustainability Financial and logistic support is needed to mobilize volunteers and
get the work done. Adequate budget allocation is thus required to keep the
project going. Possible sources of such input will be explored and secured. Local
and international aid organizations working with youths, capacity development,
agriculture transformations and natural resource management will be brought
on board. In the long run, it is also expected for such entities to takeover and
sustain the work.

3.12 Summary
Successful realization of the objectives of this work depends on the spatial and tem-
poral availability of data from the ground. Accurate and real-time readings over the
study area are needed to regularly monitor the soil. Setting up a proper data ac-
quisition infrastructure can help to achieve this. This work proposes integrating a
WSN and citizens’ participatory methods for such data flow. Existing data sources
shall also be considered as additional source and need to be acquired. With all the
data obtained, various decision support and advisory outputs can be produced. This
chapter presents approaches to be used for implementation of in-situ data collection
schemes and development of agriculture expert system based on ANN algorithm.
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Chapter 4

Research Plan

The research work is broken down to tasks and activities which are planned as follows:

ID Activity Start Finish Duration
2018 2019 2020 2021 2022

Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2

162d2/20/20197/10/2018Proposal work

124d12/28/20187/10/2018Literature Review

3 1d2/26/20192/26/2019Progress Report

4 15d4/19/20194/1/2019
Inception, site selection 

Problem 

Investigation

Phase I execution 

Task Name

20

19

18

7

9

17

10

16

11

12

13

14

15

22d5/30/20195/1/2019Network design & Calibration

8

6

20d6/28/20196/3/2019
Network deployment & 

configuration

568d9/1/20217/1/2019Data Acquisition 

131d12/30/20197/1/2019
Network evaluation/ empirical

11d9/30/20199/16/2019
Network maintenance &  expansion

66d9/30/20197/1/2019Observation analysis

89d1/31/202010/1/2019Paper write-up/ empirical findings

11d9/30/20199/16/2019Stakeholder meet-up

190d10/15/20201/24/2020
System design and development

Phase II execution

11d9/15/20209/1/2020
Facilitators’  recruit and training

Phase III execution

13d1/1/202112/16/2020
School visit and kit-hub setup

41d2/26/20211/1/2021
Volunteers recruit and training

147d9/30/20213/10/2021Soil analysis and data acquisition 

139d9/30/20213/22/2021Performance evaluation

349d9/30/20226/1/2021Paper write-up/ preliminary findings

21 221d2/1/20223/30/2021
Data analysis and knowledge build

Phase V completion 

22 16d2/1/20211/11/2021Deliverables  and Thesis write-up 

23 1d7/1/20227/1/2022Result communication

1

2

5 124d9/30/20194/10/2019
 Existing source review, Survey

Figure 4.1: Execution plan of the proposed work
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Chapter 5

Conclusion

Soil is an important resource for Ethiopian farmers, for so many reasons, but signif-
icantly for agriculture production. Agriculture is dominantly rain-fed, generated by
subsistence farmers with an average of less than one ha of cultivated land which has
poor soil fertility. The soil nutrient depletion and degradation has a negative impact
on food production potential. Crop yield is low mainly due to unhealthy soil which is
caused by various biophysical, environmental and management challenges. Continual
real-time observation and monitoring of the soil status, is thus crucial to overcome
this low yield. Doing so has been a challenge and time consuming because of lim-
ited resources and in-situ data acquisition infrastructures. An alternative is to look
for feasible and optimal methods and tools that can fill this gap. Technology ad-
vancements such as IoT are enabling tools for such on-the-spot monitoring and data
acquisition. Moreover, citizens also play significant role in monitoring and sharing such
local information. Integrating collaborative participatory approach with IoT for soil
monitoring and analysis is the way forward envisioned by this work. Through simple,
efficient, feasible and accessible soil kits, citizens can be involved in observing and un-
derstanding the nutrient content of farmlands. Sensing objects are embedded in fields
in three dimensions: time, space, and depth to obtain additional soil parameters such
as moisture and temperature. The acquired information can further be processed to
see spatial and temporal variations of soil and study the interplay between soil prop-
erties and crop growth. The outcome of such analysis further broadens the knowledge
of stakeholders and assist in agricultural advisory and decision support. It can be used
to depict the investment farmers need to put, estimate yields as exists and what to
do to improve the yield, determine the favorable soil conditions to specific crop and
hence better productivity. This work is thus, an attempt to significantly contribute
to:

• Real-time soil moisture and temperature acquisition system using WSN
• Real-time soil macro-nutrient analysis through affordable, accessible and easily

utilized soil test kits
• Participatory farm-field data collection by engaging citizens
• Integration of heterogeneous data sources and development of knowledge base
• Development of an inference engine for agriculture advisory system
• Facilitate efficient information acquisition and flow, both in quantity and quality

Accurate measurements of soil nutrient level, moisture and temperature can help stake-
holders take timely and logical corrective actions, which are key factors for better crop
productivity and regulation of nutrient uptake as well as determining the type, amount
and timing for fertilizer applications. The outcome of this project can be an important
input to economic models that assess food security and land use at different spatial
scales. The research creates a win-win-win state; enhance crop yield of farmers, in-
creased adaptation and resilience to climate change and reduce the land degradation
of the area. It is our belief that stakeholders of the agrichain will takeover this project
and sustain continual monitoring of farmlands, in larger-scale. It can be extended to a
larger scale with minimal investment either with sensors’ network rotation and make
use of existing resources at different sites of interest or with new set up on existing
architecture.
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