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Spatiotemporal dynamics of crop phenology and crop yield: The influence of climate variability in 

the Upper Blue Nile basin 

Abstract  
Climate variability/change imposes significant challenge on crop production by altering crop growth 

dynamics, phenology and yield. Vegetation phenology is an important input in crop yield modeling and an 

indicator of environmental change. Crop yield is a direct indicator of the vegetation growth response to 

climate and anthropogenic changes as well as a mechanism to assess the state of food security. 

Understanding the spatial and temporal dynamics of vegetation growth and productivity is vital for crop 

management and decision-making. Conventional production monitoring based on field survey is costly, 

time consuming and prone to error. Moreover, highly fragmented and topographically complex agricultural 

landscapes together with a high rate of climate variability becomes challenging to monitor crop growth and 

development processes. Lack of temporally frequent and spatially explicit data also constrains 

understanding of the inter-annual and seasonal dynamics of crop growth and development. Remote sensing 

data on the other hand provide a valuable opportunity for spatially explicit understanding of vegetation 

phenology and crop yield monitoring. Yet, existing remote sensing sensors do not provide temporally 

frequent and high spatial resolution data important for agricultural monitoring. In this regard, multi-sensor 

remote sensing data fusion is a valuable choice. It is therefore imperative that comprehensive assessment 

of the spatiotemporal dynamics of crop growth and production incorporating vegetation phenology and 

climate constraints using remote sensing method can provides a holistic understanding of the status of crop 

production. Thus, the main goal of this study is to investigate the spatiotemporal dynamics of vegetation 

phenology and the influence of climate variability on crop yield in Lake Tana basin, Ethiopia. To achieve 

this objective a spatiotemporal data fusion will be employed to determine vegetation growth dynamics and 

yield in heterogeneous landscapes. Furthermore, crop biomass productivity and yield estimation by 

coupling remote sensing data with a light- use efficiency-based crop model is envisioned. Landsat and 

MODIS data fusion will be utilized to detect phenology and estimate crop yield together with ground data 

calibration and climate data. Thereby, this research is expected to contribute to the literature on the current 

trend and dynamics of vegetation phenology and crop productivity in heterogeneous topography and crop 

ecosystem. 
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Introduction  
Erratic and variable rainfall patterns, and temperature increases have significant impacts on crop production 

by altering crop growth dynamics, phenology and yield (Richardson et al., 2013). Vegetation phenology is 

a multi-purpose indicator of environmental change and productivity, which makes it an important variable 

in crop growth and production monitoring (Brown et al., 2012). Crop yield on the other hand is a direct 

response to climate and anthropogenic changes as well as a mechanism to assess the state of food security 

particularly in developing countries where the main source of livelihood is agriculture (Brown et al., 2017). 

Determining and monitoring crop growth dynamics, phenology and yield requires detailed spatiotemporal 

resolution. However, such efforts are challenged by a lack of reliable and up-to-date data in many 

developing countries including Ethiopia.  

Remote sensing on the other hand provides alternative data source for a large geographical scale application 

(Atzberger, 2013). Yet, available satellite data doesn’t satisfy the need for both high spatial resolution and 

temporal frequency which are essential for crop monitoring  due to the trade-off between revisit period and 

spatial resolution (Zhu et al., 2018). One way to address this problem is with a spatiotemporal fusion of 

coarse and fine resolution data (Zhu et al., 2010). Furthermore, coupling remote sensing derived phenology 

and biophysical properties with semi-empirical crop model have been proven to provide a reliable crop 

biomass and yield estimation approach given ground calibration and validation applied (Sibley et al., 2014).  

Subsistence farming, practiced dominantly by smallholders on heterogeneous environments, together with 

high inter-annual and seasonal climate variability in Ethiopia makes crop growth and production monitoring 

efforts difficult (Ahmed, 2003; Alemu and Henebry, 2017). There is limited research to understand 

vegetation growth dynamics and production using the wealth of remote sensing data in Ethiopia (Meshesha 

and Abeje, 2018). Furthermore, the impact of variability on critical phenological dates (SOS and EOS) on 

crop production has received little attention and divergent vegetation-climate trend have been reported in 

space and time (Gummadi et al., 2018; Workie and Debella, 2018). In this context, a reliable crop 

monitoring approach considering not only the final yield, but also understanding the growth and 

development process, drivers and response to the changing climate condition and applicability at larger 

geographic scale is vital which is the major starting point of this study.  

Therefore, this study will focus on understanding the dynamics of vegetation phenology, the phenology - 

climate relationship, and on the estimation of crop biomass and yield based on spatiotemporal satellite 

image fusion. Thereby, the research will contribute to the literature on the current trend and dynamics of 

vegetation growth and phenology in heterogeneous tropical ecosystem. It will further extends the 

knowledge regarding the importance of integrating remote sensing to improve crop monitoring and 

production estimation in smallholders fragmented cropping system.  
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Objective of the study 
The general objective of this study is to investigate the spatiotemporal dynamics of vegetation phenology 

and the influence of climate variability on crop yield in Lake Tana basin, Northwestern Ethiopia through: 

• Detection of the spatial variation of vegetation phenology using a spatiotemporal MODIS -Landsat 

remote sensing data fusion technique  

• Analysis of the trends in vegetation growth dynamics and the response to current climate 

variabilities in Lake Tana basin for the period between 2001 and 2020 

• Estimation of crop biomass and yield by integrating Landsat-MODIS fused data with a LUE based 

crop model  

• Analysis of the sensitivity of crop biomass and yield to variabilities of phenological and climate 

stress (temperature and water) factors  

Conceptual framework 
The general conceptual framework of this study is integrating multi-sensor remote sensing data to 

understand the dynamics of vegetation phenology, the trends and climate determinants as well as to estimate 

crop biomass and yield. This proposal is composed of four research chapters. Figure 1 shows the general 

conceptual framework of the study. The study starts with spatiotemporal fusion of MODIS and Landsat 

image during the 2019 growing season and detection of phenology across landscape and vegetation types 

to assess if fusion improves phenology detection (Chapter 1). By improving the resolution of satellite 

products using the fusion approach, calibrating, and evaluating phenology models, vegetation growth 

changes over time (2001 – 2020) and the response to climate variability will be analyzed (Chapter 2). 

Integrating phenological parameters and crop biophysical information with semi-empirical model will helps 

us to estimate crop biomass and yield of main staple crops (Chapter 3). Lastly, the impact of climate on 

biomass and yield estimation evaluated in space and time (Chapter 4).  
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Figure 1: Workflow of the proposed study 

The study area  
Figure 2 shows the study will be conducted in the Lake Tana sub-basin of the Upper Blue Nile basin, parts 

of Ethiopia. It lies between latitude 10°29' N and 12°46'N, and longitude 36°44"E and 38°14'E with a total 

area of 15,100 km2. Cultivated land accounts for 56% of the area, other natural vegetation includes 

grassland, shrub land, and natural forest covering about 25% of the total (BoEPLAU, 2015). The mean 

annual rainfall ranges between 970 mm to the north and 1900 mm in the southern part of the catchment, 

largely occurring during June to September (‘kiremt’) season. The entire Lake Tana sub-basin falls within 

three overlapping Landsat scenes; this study will focus on the scene number P170R52 path and row to apply 

image fusion with the corresponding MODIS tile since the majority of the study area lies within this scene 

and main crop-growing region containing almost environmental conditions of the basin 
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Figure 2: Overview of the study area Landsat raw and path, MODIS tile and Land use map (source: ETHIO_GIS) 

1. Chapter One 
Modeling the dynamics of Land Surface Phenology in Lake Tana basin 

1.1. Introduction 
Land surface phenology (LSP) - the periodic life cycle event of vegetation as determined from satellite 

imagery - is useful to characterize vegetation growth dynamics across space and time (de Beurs and 

Henebry, 2010). The start of the season (SOS), end of the season (EOS) and peak greenness are important 

seasonal phenological parameters that can be derived to indicate the growth progress of vegetation during 

the growing season (White et al., 2009). It is widely used to investigate the effect of climate variability and 

the state of ecosystem change (Brown et al., 2012) and to monitor crop growth and yield (Funk and Budde, 

2009).  

Various methodologies have evolved to determine LSP from remote sensing data, yet there no single ideal 

model to accurately determine phenological parameters since most are environment dependent (White et 

al., 2009). For instance, comparison of ten models by White et al. (2009) in North America and de Beurs 

and Henebry (2010) in the higher latitude region demonstrated a strong discrepancy on the estimated timing 

of parameters across environment and vegetation types. In comparison, HANTS and threshold methods 
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have performed better in detecting phenology in different climate and vegetation classes (Vrieling et al., 

2013; White et al., 2009). The double logistic curve change method has also been tested and evaluated 

across land cover types with multiple growing seasons (Beck et al., 2006; Dash et al., 2010) and has been 

shown to better reconstruct trends of phenlogical change (Guan et al., 2014a). Application of HANTS, 

threshold and double logistic methods in this study is expected to capture important phenological 

parameters useful for crop growth monitoring purposes. 

However, the spatial and temporal resolution of available remote sensing data is a major challenge in 

regions characterized by heterogeneous topography, ecology and cropping systems (Zhu et al., 2010). The 

trade-off between spatial resolution and temporal frequency of existing satellite data limits vegetation 

phenology determination at the higher spatial and temporal details needed in such regions (Gao et al., 2017). 

Spatiotemporal data fusion between coarse and fine resolution sensors may be a feasible option for finer 

scale vegetation growth monitoring (Singh, 2012). In response to this, Gao et al. (2006) developed the 

Spatial and Temporal Adaptive Reflectance Fusion Method (STARFM). Consequently, improvements have 

been made to extend the model for various applications. For instance, Zhu et al. (2010) enhanced STARFM 

(ESTARFM) to capture surface reflectance in heterogeneous landscapes. Hilker et al. (2009) also developed 

a spatial and temporal adaptive algorithm for mapping reflectance change (STAARCH) to consider changes 

in the reflectance of coarse and fine resolution data. These methods have been widely used to detect 

cropland phenology (Liu et al., 2018; Schmidt et al., 2015), to generate of gross primary product (Singh, 

2012) and estimate evapotranspiration (Cammalleri et al., 2014). These indicate that data fusion provides a 

valuable opportunity for vegetation growth monitoring efforts in heterogeneous environments. 

Previous studies determining the phenology and seasonality in Sub-Saharan African applied different 

phenology detection methods and found spatially and temporally divergent result. For instance, Brown and 

de Beurs (2008) and de Beurs and Henebry (2010) in West Africa and Alemu and Henebry (2017) in East 

Africa, applied a quadratic model to estimate the SOS. Guan et al. (2014a) used a double logistic model to 

estimate seasonal trajectories in the growing season and Vrieling et al. (2013) employed a variable threshold 

method to determine LOS. Guan et al. (2014b) found asymmetric green up and green off rates and the 

occurrence of distinctive phenological features for cropland and natural vegetation. Heumann et al. (2007) 

reported a significant lengthening of the season in the Sudan and Guinean regions and Marshall et al. (2016) 

indicated a greening trend in the Sahel. Adole et al. (2018) on the other hand reported an absence of 

significant phenology change in recent decades. Workie and Debella (2018) reported lengthening of the 

growing season in the major ecoregions in Ethiopia. Even though, these studies contributed enormous 

efforts in phenology modeling, there are still uncertainties in the estimated parameters. The difference could 

be related to data resolution and methodology compared to the heterogeneous nature of the environment, 

which calls for more spatially explicit high-resolution investigation at local scale. 
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1.2. Problem Statement  
Rugged topography, diverse climate, environment dependent socioeconomic activity and small scale 

agricultural system practiced on fragmented and small plots size are major drivers of ecological variability 

in Ethiopia (Gummadi et al., 2018). In such a heterogeneous environment the spatial and seasonal patterns 

of vegetation phenology may not be clearly detected and understood using coarse resolution data with little 

or no ground calibration (Brown et al., 2017). This was evident in previous studies reporting spatially and 

temporally inconsistencies results, which calls for high-resolution investigation. However, cloud 

contamination on the fine spatial resolution images during the growing season is also a constraining factor 

for high-resolution analysis. Studies demonstrated the feasibility of spatiotemporal data fusion to cope with 

such problem, which were not attempted in the context of the study area.  

To this end, this study is aimed at employing a spatiotemporal image fusion based on Landsat-MODIS data 

for finer scale vegetation phenology characterization in Lake Tana basin. The ESTARFM fusion algorithm 

will be adopted, since it performs better in heterogeneous environments (Gao et al., 2015), retains spatial 

detail (Emelyanova et al., 2013) and captures phenological changes (Liu et al., 2016). The seasonal rate of 

change determined from MODIS and image pairing at the critical stages of vegetation development are 

expected to produce a reliable fusion. As a second line of this research, different phenology models will be 

employed to test if the image fusion capture major phenological parameters across landscapes and 

vegetation classes. The performance of the fusion and phenology models will be compared and validated 

using ground data acquired during 2019 growing period. Determination of vegetation growth dynamics 

based on high temporal resolution data and the use of different models is expected to improve detection of 

major phenological parameters.  

1.3. Objective   
The objective of this study is to determine the timing of vegetation phenology using a spatiotemporal 

Landsat – MODIS image fusion technique in Tana basin, Northwestern Ethiopia.  

1.4. Research question  
• Does high-resolution image acquired through spatiotemporal fusion capture vegetation phenology 

better in the heterogeneous environment in Lake Tana basin?  

• What is the reliable model to determine the timing of vegetation phenology across different 

landscapes and vegetation class? 

1.5. Data and methodology  
1.5.1. Types and sources of data 
Satellite Data acquisition and preprocessing  

MODIS Tera version 6 (8-day) composites (MOD09Q1and MOD09A1) tile h21v07 and Landsat 8 

Operational Land Imager (OLI) sensor surface reflectance data will be acquired from NASA LP DAAC 
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(https://lpdaac.usgs.gov/) and Landsat archive (https://earthexplorer.usgs.gov/) respectively for the 2019 

season. Low cloud coverage Landsat images will be selected for the entire season. Successful phenology 

detection using data fusion requires consistency between sensors. Landsat and MODIS have been found to 

have good consistency due to their similarity of data processing approaches (Gao et al., 2015). Cloud and 

cloud shadow masking for Landsat data and co-registration of the datasets using a common projection and 

coordinate system to WGS 84, UTM zone 37 will further improve consistency. 

Land cover and field data  

Data fusion and phenology parameters will be compared and validated using ground observed data collected 

from agricultural and non-agricultural fields during the 2019 growing season (June to October). Hence, the 

study area will be stratified into homogeneous unit (HU) based on topography, climate, soil mapping unit 

and cropping pattern identified through the existing land resource utilization survey conducted by the 

Amhara regional agriculture bureau (BoEPLAU, 2015). Within the HUs, crop and non-cropland will be 

identified using land cover maps acquired through the Ethiopian Geospatial Information System 

(EthioGISII) collection which is compiled and updated by the Water and Land Resource Centre (WLRC) 

(www.wlrc-eth.org) which was classified based on Landsat 8 and detail ground truth.  

The actual plot location and size across the HU will be selected comparable with the size of the fused image 

and considering geolocation error considered following (McCoy, 2005). The timing of vegetative growth 

stages will be continuously monitored from planting to harvest period with the help of agricultural agents 

and farmers. Growth stage, crop type, density, height and management practices will also be collected 

during the field visit. Furthermore, to evaluate the performance of data fusion and phenology detection 

general vegetation characteristics and spectral information will be collected using handheld spectrometer 

and observation checklist during the peak vegetative period.  

1.5.2. Method of analysis  
Two major analysis covered in this study are data fusion and phenology extraction. The overall work flow 

is presented in Figure 3. ESTARFM model will be adopted for Landsat and MODIS data fusion. Pairs of 

Landsat-MODIS image acquired at the early and ends of the growing seasons (June and October for the 

main season and December to May for the dry season) are the main input requirement. Four main steps are 

required for fusion, searching for similar pixel, calculation of the weights for prediction, calculation of 

conversion coefficient (vi) and application of ESTARFM algorithm based on Zhu et al. (2010) with w 

searching window for the predicted high resolution central pixel (xw/2,yw/2 ) at date tp as follows:  

𝐿𝐿 (
𝑥𝑥𝑤𝑤
2

,
𝑦𝑦𝑤𝑤
2

, 𝑡𝑡𝑝𝑝, 𝑏𝑏)  = �𝐿𝐿(
𝑥𝑥𝑤𝑤
2 ,

𝑦𝑦𝑤𝑤
2 , 𝑡𝑡𝑜𝑜, 𝑏𝑏)  +  𝑤𝑤𝑤𝑤 ∗  𝑣𝑣𝑤𝑤 ∗  (𝑀𝑀 (𝑥𝑥𝑤𝑤,𝑦𝑦𝑤𝑤, 𝑡𝑡𝑝𝑝,𝑏𝑏 ) – (𝑥𝑥𝑤𝑤,𝑦𝑦𝑤𝑤, 𝑡𝑡𝑜𝑜,𝑏𝑏)) 

𝑁𝑁

𝑖𝑖=1

 

https://lpdaac.usgs.gov/
https://earthexplorer.usgs.gov/
http://www.wlrc-eth.org/
http://www.wlrc-eth.org/
http://www.wlrc-eth.org/
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Where, L, M denotes Landsat and MODIS pixels at xi and yi location in a ‘b’ band, to pairs of images used 

for the prediction, N and wi are the number of similar pixel used to create the weight and the coefficient in 

the ith date of prediction, respectively. To improve the temporal and land cover change detection 

performance of the model, the difference between the input and predicted MODIS images will be accounted 

for. One limitation of ESTARFM is similar pixels are identified by search from the entire study area, which 

results undesirable error in heterogeneous environment where several land cover class exists(Knauer et al., 

2016a). To address this,  ISODATA clustering of Landsat images will be applied based on the number of 

land cover classes acquired from existing land cover data to consider land cover change while selecting 

similar pixel as recommended by (Zhu et al., 2010) and applied by (Knauer et al., 2016b; Ma et al., 2018).  

To evaluate the accuracy of the prediction, a band-by-band linear correlation between the simulated and 

corresponding original Landsat image on the same date of the prediction will be used. Statistics will be 

computed across land cover types. A sample of the ground truth data will be used to validate the accuracy 

of the predicted image across different land cover types and environment. Once, the accuracy is tested and 

evaluated, NDVI and EVI will be calculated for the annual phenology detection. 

 
Figure 3: Workflow of image fusion and phenology detection  
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Phenology detection  

Phenology extraction based on fused image on all cloud free pixels identified before fusion to evaluate how 

accurate the fusion detects phenology variation. The three proposed phenology models are the double 

logistic function (Beck et al., 2006; Zhang et al., 2003) based on inflection points; harmonic analysis of 

time series (HANTS) based on maximum increase (Moody and Johnson, 2001) and variable threshold 

methods (Vrieling et al., 2013; White et al., 1997). The main consideration in selection of these models 

include 1) applicability of detection in tropical and heterogeneous environments, 2) long-term trend 

detection capability and 3) applicability of models to detect cropland phenology. Given the complexity of 

the landscape, agricultural system and growing season variation in Ethiopia, the application of these models 

is expected to increase the predictive power across natural vegetation and agricultural landscapes. The 

application of different models will also minimize the errors and uncertainties associated data fusion 

procedures.  

Model evaluation and validation 

The spatial and seasonal pattern of phenology derived from the fused image based on the aforementioned 

models will be compared and evaluated at pixel and aggregate levels. The absolute difference of phenology 

parameters between pairs of models at each pixel will be used to test if they show similar characteristics 

and meaningful patterns for the determined parameters. At an aggregate levels homogeneous pixels 

stratified by vegetation type and uniform biophysical environment will be used to assess the predictability 

of models across different spatial and vegetation classes. In addition, the data acquired from ground 

observations will be correlated with the model outputs to validate phenology for agricultural land. The 

performance of models will be quantified statistically using the root mean square error (RMSE) calculated 

between observed NDVI and estimated values. Coefficient of determination (R2) will be used to evaluate 

models bias and accuracy  

1.6. Expected output  
• High resolution (30m and 8 day) seasonal time series spectral and vegetation index 

• The timing of vegetation growth cycle (SOS, EOS, peak period and LOS) across different 

vegetation and environment unit useful for crop monitoring and management 
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2. Chapter Two  
Trends of vegetation phenology and the influence of climate variability/change in Lake 

Tana Sub basin, Northwestern Ethiopia from 2001 to 2020 

2.1.  Introduction  
A better understanding of medium to long-term vegetation-climate trends and relationships is important in 

understanding complex atmospheric and terrestrial ecosystem dynamics (Brown et al., 2012; Forkel et al., 

2013). Climate variability/change is predicted to impact agriculture by shifting phenology timing mainly 

due to increases in temperature and/or the seasonality of rainfall amount and rainfall intensity (Brown et 

al., 2010). Variability of these elements during key phenological stages has a large influence on agriculture 

(Hmimina et al., 2013). For instance, a late SOS may lead to exposure to temperature and water stress 

during flowering and ripening periods which could result in crop loss or declining productivity (Brown et 

al., 2017). Yet, the effect climate on phenology and the current phenology – climate trends depend on 

climate regions of the world (Richardson et al., 2013). A lengthening of the growing season has been 

witnessed in the past few decades at global level and early green-up in high latitude climates because of 

global warming and CO2 increase (Brown et al., 2012; Chen et al., 2018). The trends and drivers of 

vegetation phenology over the tropics on the other hand is less clear (Vrieling et al., 2013). The IPCC fifth 

assessment report indicates that climate variability/change imposes a significant challenge on agricultural 

production in Africa by increasing water stress (Niang, 2014). The effect is not uniform across vegetation 

classes and regions in the continent (Guan et al., 2014a). Thus, understanding the trends and response of 

vegetation to climate variability/change is vital to understand future food production and food security 

trends in developing countries including Ethiopia. 

Studies investigating the effects of climate variability and growing season dynamics in Ethiopia (Alemu 

and Henebry, 2017; Eastman et al., 2013; Workie and Debella, 2018) revealed that Ethiopia is perhaps the 

most vulnerable country in Africa to climate variability/change induced impacts because of complex 

topography, fragmented landscapes and a dependency on rain fed agriculture. Climate change has already 

altered the annual amount and distribution of rainfall (Meroni et al., 2014; Musau et al., 2016). Early green-

up, an increase in the ‘kiremt’ rainfall amount in the north and a shorter growing season in south and eastern 

Ethiopia have all resulted in water stress during critical crop growth stages (Brown et al., 2017; Funk et al., 

2015). Whereas Gummadi et al. (2018) found substantial decreases in the amount and intensity of spring 

rainfall and a decline in the number of annual rainy days. Meroni et al. (2014) and Song Shuai (2018) argued 

that increasing temperature are also a limiting factor for vegetation growth in the highlands of Ethiopia. 

Divergent and spatially inconstant results on the trends and the response of vegetation to climate 

variabilities justifies the importance of a spatially explicit examination of the medium to long-term climate 

– vegetation trend. 



11 
 

Coarse resolution (≥250m) satellite data such as MODIS is unable to detect phenology trends in fragmented 

agricultural areas with small plots (<1 ha). Persistent cloud cover is also a major challenge for high-

resolution phenological analysis in a tropical climate (Liang et al., 2014; Singh, 2012) which is a common 

problem in the highlands of Ethiopia. However, spatiotemporal data fusion techniques, such as ESTARFM 

combine coarse and fine resolution images to fill these gaps (Liu et al., 2016). In line with this,Schmidt et 

al. (2015); (2012) for example highlighted the applicability of time series spatiotemporal data fusion for 

phenology studies in Queensland, Australia. Gao et al. (2017) also derived a 15 years time series of MODIS-

Landsat image fusion using three Landsat sensors data (TM, ETM+ and OLI) and found reliable phenology 

trend comparable with ground data in the US Corn Belt region. These studies were conducted in regions 

with relatively large farm sizes and there is limited research effort to apply such method in a fragmented 

landscape condition. Therefore, this study is intended to use spatiotemporal fusion to understand medium-

term (20 years) phenology–climate trends in Ethiopia. Efforts to validate fusion and phenology methods 

across landscape and vegetation classes in chapter one will be the basis for the time series analysis. 

2.2. Statement of the problem  
Climate variability/change contributes to an unprecedented impact on crop production in Ethiopia (Brown 

et al., 2017). Variation in the timing of vegetation growth consistently leads to crop failure and an increase 

in diseases, invasive species, weeds and pests in the past few decades, suggesting that more detailed 

phenology and climate trend analysis is required to quantify the temporal and spatial scale of the variability 

(Evangelista et al., 2013). Previous studies indicate a lengthening trend of the growing season in northern 

Ethiopia (Brown et al., 2017; Workie and Debella, 2018).Yet, the response of vegetation to the current 

climate condition is overlooked and not well investigated with sufficient temporal detail. In addition, the 

existing few studies have relied on the analysis of annual climate variability and LOS, but variability during 

the critical vegetation growth periods are also the main constraining factors affecting agricultural 

production in Ethiopia, which remains unclear (Gummadi et al., 2018). Thus, given the diverse 

microclimate and cropping pattern, topographic and ecological heterogeneity there is a need to understand 

the phenology - climate trend based on multi-sensor spatiotemporal data fusion approach that may provide 

valuable information about the impact of current climates on crop growth and production. 

In this regard, this study will characterize vegetation-climate trends during the critical growth stages- with 

particular emphasis on cropland - using information retrieved from multi-sensor satellite data for the period 

between 2001 to 2020. Time series vegetation phenology will be estimated first using the data fusion and 

phenology methods that evaluated and validated in the first chapter of this study. Secondly, the trends and 

pattern of vegetation phenology and climate variables (temperature and precipitation) pertinent to 

phenological timing will be investigated. Thirdly, the interaction of climate factors and vegetation 

phenology will be evaluated in space and time in an attempt to identify consistent phenology drivers. This 
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will be useful to assess if the current climate has a significant impact on crop growth as well as to identify 

critical periods of the season affecting crop growth and production. Time series land surface phenology 

monitoring using high-resolution data is expected to detect trend in vegetation growth dynamics overtime.  

2.3.  Objective of the study  
The main objective of this study is to investigate the trends of vegetation growth dynamics and the response 

to climate variabilities in Lake Tana basin, in Northwestern Ethiopia from 2001 to 2020. 

2.4.  Research question 
• What is the medium-term seasonal and inter-annual trajectory of vegetation phenology and climate 

variability during the growing season?  

• What is the interrelationship between vegetation phenology and climate variability during the critical 

phenological stages of vegetation in Lake Tana basin? 

2.5. Data and Methods  
2.5.1. Types and sources of data 
Satellite image  

Temporally frequent MODIS data and high spatial resolution Landsat data will be used in this study. 

MODIS Terra composite (8 day) data will be accessed for the period between 2001 to 2020 from NASA’s 

LP DAAC website (https://lpdaac.usgs.gov/). Less cloudy atmospherically corrected surface reflectance 

Landsat TM (2001 to 2011) and Landsat 8 OLI (2013 to 2020) data, which is the base in many biophysical 

applications, will be acquired from Landsat archive (https://earthexplorer.usgs.gov/). Both data will be 

projected using common coordinate system using WGS84 UTM zone 37 and paired for fusion. The bands 

and spectral ranges involved in the data fusion in this study are as shown in Table 1 . 
Table 1: Sensors spectral bands used in the study 

Bands Landsat TM Landsat8 (OLI) Path/row MODIS (Tera) Tile 
 Bands Wavelength(

µm) 
Bands Wavelengt

h(µm) 
170/52  Bands Wavelength(µ

m) 
Resol
ution 

Type 

Blue B1 0.45 - 0.52 B2 0.45 - 0.51 B3 0.459–479 500 MOD09A1 h21v07 
Green B2 0.52 - 0.60 B3 0.53 - 0.59 B4 0.545–0.565 500 MOD09A1 
Red B3 0.63 - 0.69 B4 0.64 - 0.67 B1 0.620– 0. 670 250 MOD09Q1 
NIR  B4 0.76 - 0.90 B5 0.85 - 0.88 B2 0.841–0.876 250 MOD09Q1 
SWIR1 B5 1.55 - 1.75 B6 1.57 - 1.65 B6 0.1628–0.1652 500 MOD09A1 
SWIR2 B7 2.08 - 2.35 B7 2.11 - 2.29 B7 0.2105–0.2155 500 MOD09A1 

Climate dataset  

Precipitation and LST will be used as a climate factors in this study. The Climate Hazards Group Infrared 

Precipitation with Station (CHIRPS) gridded rainfall dataset (5km) which have been evaluated and found 

to be reliable for Ethiopia (Funk et al., 2015) and MODIS LST (1km), which includes daytime and nighttime 

records will be accessed from (http://chg.geog.ucsb.edu/data/chirps/). To match with the spatial resolution 

of the Landsat-MODIS fused data, the rainfall and LST data will be resampled. Then the climate variables 

will be aggregated to match the timing of the phenology parameters while considering time lag time effects. 

https://lpdaac.usgs.gov/
https://earthexplorer.usgs.gov/
http://chg.geog.ucsb.edu/data/chirps/
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For further phenology-climate relationship analysis, phenology parameters will be summarized within the 

resolution of climate dataset and uniform environmental zones. 

Field data  

Phenology and climate trends will be analyzed across homogeneous environmental units and per vegetation 

class, since croplands and other vegetation types respond differently to the inter annual and seasonal climate 

variation (Jong et al., 2012). Hence, a land cover mask will be used to identify major vegetation classes. 

For time series analysis during the study period, stable pixels will identified. Croplands have clear 

seasonality with high NDVI annual variance and standard deviation, which could be used to identify stable 

cropland pixels. The identified cropland will be used to collect phenological history from farmers. Farmers 

will be interviewed about sowing dates, green up, flowering, fruiting, harvest periods, final yield and other 

crop management information and the result will be compared with actual field observation identified in 

chapter one of this study. In addition, district level production statistics will be acquired from the regional 

agriculture bureau. 

2.5.2. Method of Analysis  
The analysis covered in this study includes vegetation-climate trend and the relationship using Breaks for 

Additive Seasonal and Trend (BFAST) and partial least square (PLS) regression methods, respectively 

based on time series phenology determined from Landsat – MODIS fused data as shown in Figure 4 and 

discussed below.  

 
Figure 4: Workflow of phenology-climate trend analysis 
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Time series image fusion and phenology detection 

To capture the spatial heterogeneity of phenology in fragmented landscapes, a  time series of Landsat-

MODIS data fusion using ESTARFM and phenology detection algorithms as evaluated and validated in the 

first objective of this study will be employed. Time series fusion will be conducted for periods between 

2001 to 2003, 2005 to 2007, 2009 to 2011 using Landsat TM, 2013 to 2015, and 2017 to 2020 using 

Landsat8 OLI sensors. ESTARFM works when pairs of MODIS and Landsat data are available and thus 

these periods are selected considering Landsat data gaps and maintaining uniformity. Phenology parameters 

will be determined from an NDVI time series derived from the fused time series data and from MODIS 

NDVI for comparison. Data acquired from farmers will be used to evaluate the time series SOS, EOS and 

LOS, and district level production statistics peak greenness parameters considering the peak NDVI 

correlates with annual yield  

Trends and climate determinants of vegetation growth dynamics  

Vegetation phenology and climate factors (precipitation and Tmax, Tmin) trend and the inter-annual and 

seasonal variation will be analyzed using BFAST algorithm. BFAST is selected in this study since it 

accounts for seasonal and spatial change in the time series and suitable to detect medium to long-term trends 

and break points (Verbesselt et al., 2010). The algorithm integrates an iterative decomposition of the 

additive components of trend (T), seasonality (S) and residual error (e), with abrupt, gradual, and seasonal 

change (Musau et al., 2018; Verbesselt et al., 2010). The model iteratively decomposes the time series to 

fits a piecewise linear approximation to calculate trend and seasonality as:  

Yt = Tt + St + et;  

Where t is the time from 2001 to 2020 in case of this study and will be implemented in R-Package 

(https://CRAN.R-project.org/package=bfast). The algorithm was initially created for MODIS NDVI time 

series, but according to Verbesselt et al. (2010) the method can be used with any time series trend analysis 

such as weather data. This study proposes BFAST to analyze trends in vegetation growth dynamics and 

climate factors across land cover type and environment. 

The relationship between phenological metrics and climate driving factors will be investigated using 

regression analysis (Chen et al., 2018; Wu et al., 2015). Prior to analyzing the vegetation – climate 

relationship, a time lag correlation analysis will be applied in weekly, biweekly and monthly time steps 

between climate variables and vegetation growth stages to identify the best-suited period for the relationship 

(Wu et al., 2015). Considering the lag-time effect, PLS regression model will be applied to analyze the 

response of vegetation growth to temperature and rainfall. PLS regression is proposed since it perform 

multiple correlation between variables (Ding et al., 2017; Zhang et al., 2017). One of the outputs of PLS 

regression, variable importance projection (VIP), that explains the importance of independent variables 

explaining the dependent will identify dominant factor affecting vegetation growth. VIP value greater or 

https://cran.r-project.org/package=bfast
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equal to one indicates the importance of climate factors during the season(Chen et al., 2018). This will 

give us an insight about the impact of seasonal climate variability on seasonal vegetation growth and 

critical vegetation growth stages.  

2.6. Expected outputs  
• Medium-term trends and patterns of vegetation growth dynamics for monitoring and management 

of crop growth such as sowing periods and harvesting time. 

• Trends of climate variability and magnitude of climate influence on vegetation and crop growth  

3. Chapter Three 

Biomass and crop yield estimation for major cereal crops in the Lake Tana basin 

3.1. Introduction  
Climate variability/change can have a negative influence on crop production systems, particularly those 

that support a large population (Lobell and Gourdji, 2012). The inter-annual and seasonal variability of 

rainfall and temperature can have a large impact on agricultural production in sub-Saharan African 

countries where livelihoods dominantly depend on agriculture (Burke and Lobell, 2017). On the other hand, 

high population growth in the past few decades have led to increased demand for agricultural products 

(Niang, 2014). In such circumstances, timely and accurate information on crop yield and production is 

important for decision makers and planners (Lobell and Burke, 2010). Lack of reliable data hinders crop 

production monitoring and yield estimation efforts in Africa including Ethiopia (Mann and Warner, 2017). 

Remote sensing data due to their synoptic and repetitive coverage provides a means to detect crop biomass 

and yield variation (Lobell, 2013). Two popular approaches to estimate crop yield from remote sensing 

includes empirical statistical model and processed based crop growth model (Sibley et al., 2014).  

Empirical statistical models are usually based on a correlation of historical yield statistics or vegetation 

biomass and remotely sensed vegetation indices (VI) such as NDVI integrated at phenological stages (Funk 

and Budde, 2009; Johnson, 2016; Zambrano et al., 2018). In these models, understanding the timing of the 

relationship between yield and VIs is the key to estimate yield (Battude et al., 2016). Incorporating remote 

sensing derived biophysical properties and spectral indices improves regional level yield prediction 

(Claverie et al., 2012). However, the main drawback of empirically based approaches is that they require 

recalibration when applied in other places and time periods (Marshall et al., 2018). 

Process based crop models on the other hand simulate crop-soil atmosphere relationships to describe growth 

and development. Models such as AquaCrop (Silvestro et al., 2017), STICS (Constantin et al., 2015) and 

WOFOST (Huang et al., 2015) have all assimilated remote sensing derived biophysical properties such as 

FAPAR and LAI for regional level estimation. This approach accounts for different environmental stress 
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factors, which can be useful to capture yield variability (Marshall and Thenkabail, 2015). The problem is 

these models require a lot of ground-based and other input data and calibration (Battude et al., 2016).  

Semi-empirical models based on Monteith (1972) light use efficiency (LUE) hoverer are easy to implement 

and translate remote sensing derived biophysical parameters into total biomass based on the assumption 

that biomass productivity is proportional to photosynthetically active radiation over the growing season 

(Lobell, 2013). Likewise model coupling LUE and process based models such as Simple Algorithm For 

Yield estimates (SAFY) developed by Duchemin et al. (2008) only require a few parameters, are designed 

for remote sensing application and can simulate crop biomass and yield over large geographic area (Claverie 

et al., 2012). SAFY combines Monteith (1972) LUE theory with a Maas (1993) leaf partitioning function 

to simulate daily time series of Dry Aboveground biomass (DAM), Green Leaf Area Index (GLAI) and 

actual yield (Y) (Claverie et al., 2012; Dong et al., 2016). Most of its parameters are linked with remote 

sensing derived phenology and biophysical properties.  

Availability of high spatiotemporal remote sensing data that are comparable to field sizes throughout the 

growing season constrains the application of semi-empirical models (Liao et al., 2019). Similarly, accurate 

phenology determination at higher spatial and temporal time scales is an important input for field scale and 

inter-annual yield estimation, which can be achieved using a multi sensor spatiotemporal data fusion 

method (Dong et al., 2016; Gao et al., 2017). In this regard, Liao et al. (2019), (Gao et al., 2018) and Dong 

et al. (2016) for instance, fused Landsat8 and MODIS to estimate crop biomass and yield successfully at 

subfield scale and infer historical production trajectories. Such an approach has not been attempted in the 

context of the study area to support the traditional field survey methods, which are costly, untimely and less 

reliable. Therefore, optimization of SAFY model using phenology acquired through image fusion, 

calibration with remote sensing biophysical parameter (LAI) using in-situ measurement is envisioned in 

this study.  

3.2. Statement of the problem  
Crop production in Ethiopia is characterized by rain fed agriculture, a low level of productivity and 

substance smallholder farming practices (Ahmed, 2003; Alemu and Henebry, 2017). Moreover, climate 

variability and extreme weather events, periodic crop losses and food shortages are common phenomena 

(Brown et al., 2017). To minimize the vulnerability, sound spatiotemporal crop production monitoring and 

yield information is crucial. However, a lack of reliable, timely and accurate ground information is the 

major challenge in Ethiopia. Remote sensing based models can fill such gaps, but have uncertainties due to 

an absence of images satisfying both high spatial and temporal resolution. Furthermore, Ethiopia is also 

highly fragmented and topographically complex which requires high spatial remote sensing data to estimate 

crop yield. Integrating phenology and biophysical parameters determined from a Landsat-MODIS fused 

product with a semi empirical model might improve yield estimation in this data scarce environment. There 
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are limited studies so far devoted to clarifying and understanding the unique advantages of remote sensing 

for crop production monitoring and yield prediction in Ethiopia (Meshesha and Abeje, 2018). Thus, this 

research will assimilate phenology information and crop biophysical properties derived from multi-sensor 

fused data to estimate crop biomass and yield in a fragmented agricultural landscape in the in Lake Tana 

basin. To achieve this, MODIS-Landsat fused image and phenology dynamics validated in (Chapter 1) will 

be assimilated in the SAFY crop model. Since this study will be evaluated and validated with field data, it 

can serve as a baseline for large area and time series production analysis in similar environments.  

3.3. Objective  
The objective of this study is to estimate crop biomass and yield by assimilating Landsat-MODIS fused 

data into SAFY in Lake Tana basin.  

3.4. Research question  
• Do fused spatial-temporal data improve crop yield estimates in a topographically complex and 

fragmented landscape? 

3.5. Data and Methodology  
3.5.1. Types and sources of data  
Crop biomass and yield estimation in this study require biophysical field measurement, climate (daily 

temperature, rainfall and incoming solar radiation) and satellite imagery. Temperature data will be acquired 

from nearby meteorological stations from national metrological agency of Ethiopia located within 10km 

radius of the sample plots (http://www.ethiomet.gov.et). NDVI, EVI, and phenological date maps acquired 

through image fusion for the 2019 and 2020 seasons derived and calibrated in Chapter 1 will be used. 

Incoming short wave radiation data will be obtained from EUMESAT’s land surface analysis website 

(https://landsaf.ipma.pt/en/) since it is one of the input for the yield estimation model.  

Field measurement 

Field data will be collected to calibrate and validate crop model input parameters. Leaf area index (LAI) 

which is the main input and state variable in this study will be collected during the 2019 and 2020 growing 

season. Available surveys by the Amhara agricultural bureau (BoEPLAU, 2015)  show that the target crop 

types are dominantly produced in the Dangla (wheat, tef), Mecha (maize, tef), Fogera (rice and maize) 

Sekela and Libo Kemkem districts. Hence, agricultural test plots will be identified within a 10km radius of 

the local metrological station in these districts by stratifying the cultivated land based on environmental 

determinants of yield (topography, soil and climate). A total of 100 sample plots considering the 

combination of the number of districts and target crop types is proposed to be covered within two years of 

data collection. Considering 30m Landsat data and the small plot size of the area, farmer plots satisfying a 

3 x 3-pixel window will be selected to collect the required sample data. For each crop types, we will sample 

http://www.ethiomet.gov.et/
https://landsaf.ipma.pt/en/
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LAI in a non-destructive measurement approach (Marshall and Thenkabail, 2015) using a Plant Canopy 

Analyzer across plot transects during the main phenological stages of crops. Aboveground biomass and 

yield during the harvest period from the same sample plots will be measured with a destructive approach. 

Furthermore, crop height, intensity and crop type will be collected. The LAI and yield sample will be split 

for model calibration and validation. In addition, the district (Woreda) level ‘Meher’ season official 

production statistics acquired from the Amhara Agricultural Bureau will be used to compare the model 

output at district level.  

3.5.2. Method of analysis  
Crop biophysical variables derived from Landsat8 - MODIS fused data assimilated with a semi-empirical 

crop model (SAFY) will be employed to estimate biomass and yield. The methodology consists of 

establishing a regression equation between ground bias corrected MODIS LAI and Landsat-MODIS fused 

NDVI/EVI; deriving input variables and calibrating model parameters based on estimated GLAI; and 

phenology and field measurement to estimate biomass and yield. Figure 5 shows the general workflow of 

the methodology. 

 

Figure 5: Biomass and Yield estimation workflow. Phenology parameter Pla and Plb are two leaf-partitioning factors, Stt is 
Temperature sum for senescence, Do refers days of emergence, Rs and Py are rate of senescence and rate of grain filling 
respectively. Prior parameters (Tmin, Topt and Tmax refers to the minimum, optimum and maximum temperature for growth, εC 
and k stands for climate efficiency and light interception coefficients, DAMo is the initial dry above mass). ELUE stands for effective 
light use efficiency. 

Retrieving green LAI from remote sensing data 

GLAI is the main state variable in SAFY model to determine light interception capacity of a crop and daily 

accumulation of DAM (Dong et al., 2016). It will be acquired through an empirical relationship between 

bias corrected MODIS LIA using field measured LAI and Landsat8 - MODIS fused NDVI/EVI. This should 
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be successful since past studies have found an empirical relationship between satellite spectral indices and 

ground measured GLAI (Liao et al., 2019; Morel et al., 2014). Furthermore, because the widely used NDVI 

saturates at a relatively low LAI and is sensitive to soil background information (Liu et al., 2012), this study 

will also uses EVI for comparison. The kind of relationship and equation acquired will be evaluated at 

different phenological stages of crop development. The best performing equation that determines the 

relationship will be applied to the entire image time series. The performance of the relationship will be 

evaluated using RMSE between ground observed LAI and the estimated satellite GLAI and the coefficient 

of determination (R2). This GLAI deduced from satellite image will be used to calibrate the biomass and 

yield model parameters. 

Model development and parameter calibration 

SAFY model is designed to estimate simulates daily GLA, DAM and final grain yield (Y) of crops from 

date of emergence to end of senescence (Duchemin et al., 2008). DAM is proportional to absorbed 

photosynthetically active radiation (APAR) estimated based on (Monteith, 1972) light use efficiency 

approach (equation 1). The main input variables GLAI will be established between Landsat-MODIS fused 

NDVI/EVI and ground measured GLAI (as discussed above). Daily temperature (Ta) is also the driving 

factors acquired from climate datasets. Subsequently other parameters will be calculated, calibrated and 

simulated. The parameters can be grouped in to fixed parameters acquired from literatures and field 

measurement, phenological parameters and agro environmental parameters based on GLAI estimated based 

on fused NDVI/EVI as shown in table 2. 

𝐷𝐷𝐷𝐷𝑀𝑀 = 𝐸𝐸𝐿𝐿𝐸𝐸𝐸𝐸 ∗ 𝐷𝐷𝐴𝐴𝐷𝐷𝐴𝐴 ∗ 𝐹𝐹𝑡𝑡(𝑇𝑇𝑇𝑇) … … … . . 1 

𝐷𝐷𝐴𝐴𝐷𝐷𝐴𝐴 = 𝐴𝐴𝑅𝑅 ∗ εC ∗ fAPAR … … … … … … … 2 

𝑓𝑓𝐷𝐷𝐴𝐴𝐷𝐷𝐴𝐴 = 1 −  exp (−k ∗ GLAI) … … … … 3 

Where, DAM is the Dry aboveground biomass, which is to the function photosynthetically active radiation 

(APAR) and effective light use efficiency (ELUE) and Ft (Ta) temperature stress function. APAR is the 

product of incoming short wave radiation (Rg), climate efficiency coefficient (εC) and light interception 

efficiency that link the fraction of photosynthetically active radiation (fAPAR) to green leaf area index 

(GLAI) via light interception coefficient (K) (equation 2&3).  

Initial model parameters (DAMo, εC, K, SLA and T (Tmin, Topt and Tmax)) are parameters that will be 

selected according to the literature. Climate efficiency, which is the ratio of PAR to incoming shortwave 

radiation usually between 45% - 50%. K represent the light interception coefficient links fAPAR and GLAI 

in Beers law (equation 3). SLA is the ratio of leaf area per units of dry biomass which will be calculated 

after initial model simulation. Tmin, Topt and Tmax are decisive temperature for each crops where Tmin is 

the base temperature below which crop growth does not occurs; Topt is the optimal temperature and Tmax 
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that leads to a decrease in crop growth. Temperature factors for major cereal crops in Ethiopia will be 

determined according to findings of local research centers and previous studies. 

Table 2: SAFY Model parameters 
No  Parameters Units  No  Parameters Unit 
Initial values determined from literature/field  Derived from time course of GLAI & phenology 
1 Initial dry aboveground mass (DAM0) g m-2 8 Day of plant emergence (Do) Day  
2 Climatic efficiency (εC) - 9 Temperature sum for senescence (Stt) 0C 
3 Light-interception coefficient (K) - 10 Rate of senescence (Rs) - 
4 Temperature for growth (min, opt, max) 0C 11 Partition-to-leaf function (Plb) - 
5 Specific leaf area (SLA) m2 g-1 12 Partition-to-leaf function (Pla) 0C day 
6 Polynomial degree (β) - 13 Rate of grain filling (Py) - 

7 Effective light-use efficiency (ELUE) g MJ-1 14 Water stress (Ws)  

Phenological parameters (Do, Stt, Rs, Pla, Plb) will be determined from the phenology modeling 

procedure (Chapter 1) and daily temperature data. The key phenological stages required are SOS, day of 

senescence (DOS) and EOS that can be effectively retrieved using the double logistic inflection point 

method. Date of emergence (Do) will be replaced with SOS adjusted based on ground data validation. 

Temperature sum for senescence (Stt) is the cumulative temperature between SOS to DOS. The rate of 

senescence (Rs) determined from the beginning to end of senescence. Leaf partitioning –to-leaf fraction 

(Pla, Plb) are the ratio of leaf DAM and total dry biomass which capture the fraction of dry biomass 

partitioned per day during the plant vegetative stages calculated after (Maas, 1993). The effective light use 

efficiency (ELUE) is dependent on local agro-environmental conditions will be obtained from GLAI and 

stress factors.  

These parameters will be calibrated based on the estimated GLAI and an optimization procedure aimed at 

reducing difference between observed GLAI and simulated GLAI by the model. In the first round of 

calibration, phenological parameters (Do, Stt, Rg Pla and Plb) will be calibrated by reducing RMSE 

between simulated GLAI and observed GLAI according to (Duchemin et al., 2008). This will be used to 

optimize the remaining remaining parameters. Finally, running the model based on these calibrated 

parameters will yield daily GLAI and dry biomass productivity. The total biomass will be aggregated for 

the growing period to estimate final grain yield. The final grain yield estimation will be based on total DAM 

and harvest index (HI). HI will be determined based on field experiment on selected field during the study 

period thus:  

𝑌𝑌 = 𝐷𝐷𝐷𝐷𝑀𝑀 ∗ 𝐻𝐻𝐻𝐻… … … 4 

Model validation and evaluation  

The model will be validated and evaluated using data from two growing seasons (2019 and 2020). To 

evaluate the improvement in model performance due to image fusion, the model will be run using MODIS 

only and Landsat-MODIS fused data. The relative difference between the simulated GLAI and the 
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corresponding satellite image value will be compared for the two scenarios to evaluate the robustness of 

the model. Pairs of simulated and observed GLAI values on the same location will be compared based on 

coefficient of determination (R2) and RMSE. To check the performance over crops with different 

photosynthetic capacity, the model will be evaluated for maize (C4), and C3 (wheat, tef, rice) crops. The 

variability of simulated DAM and yield will be evaluated across uniform cropping environments and based 

on actual field measurements obtained during the harvest. Farmers estimates of actual yield and district 

level crop yield statistics will also be used as independent data to evaluate the performance of the model at 

field and aggregate level respectively. 

3.6. Expected output  
• Spatially distributed crop biomass and yield estimates of major crops (tef, maize, rice, wheat). 

4. Chapter Four 

Sensitivity of crop biomass and yield to phenological and climate (temperature and rainfall) factors  

4.1. Introduction  
Implementing crop yield estimation model over time and across space is important to understand the 

dynamics of crop production (Lobell et al., 2003). However an apparent uncertainties in the estimated yield 

might be expected since crop models simplifies model parameters and do not take in to account every stress 

factor responsible for spatial and inter-annual variation of crop growth and development (Battude et al., 

2016). Model parameters and inputs included in the model depend on the type of model used, environment 

and crop type under investigation (Vanuytrecht et al., 2014). In this regard, it is important to identify model 

parameters and input variables most influencing the output of the model over time. This can be done using 

sensitivity analysis (SA) (Liu et al., 2012). Parameter SA is vital for model understanding, for correct 

application to local environments and to screen important parameters (Campolongo et al., 2007). It could 

also be used for model parameter calibration in large-scale applications and for understanding the 

underlining causes of yield variability.  

The biomass and yield estimation model proposed in Chapter 3 of this study (SAFY), is advantageous to 

apply at regional level since it integrates remote sensing data. Previous studies have shown that the model 

effectively estimates crop biomass and yield at a large geographical scale with few parameters (Bellakanji 

et al., 2018; Chahbi et al., 2014; Dong et al., 2016). However, due to its simplicity and uncertainties in 

integrating remote sensing data, uncertainty in the estimated biomass and yield is inevitable. For instance, 

the original SAFY does not account for the effect of water stress, and instead assumes it is accounted for 

by the remote sensing input (leaf area index) (Silvestro et al., 2017). However, this may lead to erroneous 

estimates in while implementing in the semi-arid climate where rainfall variability plays a significant role 
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for crop yield variability (Lobell et al., 2003). In this regard, understanding and identifying the dominant 

input parameters that cause spatial and temporal yield variability is vital to implement remote sensing based 

production estimation over large geographical scale. 

Similarly, phenological factors, particularly the start of emergence influences inter-annual crop yield 

variation since the model estimation runs from emergence to senescence (Claverie et al., 2012). Inter-annual 

variability of planting date can be attributed to climate variability or management factors. Furthermore, the 

importance of certain parameters may be higher in certain growth stages and their influence may gradually 

decrease as the importance of the other increases, implying performing SA at each stages of the 

phenological period (Wang et al., 2013). Therefore, this study is intended to use sensitivity analysis to 

assess how changes in temperature, rainfall and phenological variation affects crop production in space and 

time. This will be used to assess the projected impact of temperature and rainfall on yield. 

4.2. Statement of the problem 
Applying crop yield estimation using semi-empirical models such as SAFY over larger geographical areas 

over time requires adjustments of model parameters inherent to the environment under investigation 

(Battude et al., 2016). SA can be used to identify the dominant parameters and inputs responsible for 

spatiotemporal variation of the model output. Phenology related parameters and a remote sensing derived 

biophysical parameter (GLAI) are the main parameters responsible for spatial and temporal variability of 

yield in the SAFY model. Understanding how crop biomass and yield is sensitive to inter annual and spatial 

variability of phenology related parameters (SOS, LOS) and climate stress factors (temperature and rainfall) 

could be used to predict future impacts on production which is important for decision making. Therefore, 

this study is intended to evaluate the relative influence of model parameters and input variables of SAFY, 

and in turn analyze the impacts of projected rainfall and temperature on crop biomass/yield. The assumption 

is that spatiotemporal variability of biomass production and yield is explained by inter-annual variation of 

phenology and climate stress factors. The sensitivity of yield and biomass production to SAFY model input 

parameters will be analyzed to apply the model for time series analysis. Based on the parameters determined 

to be most influential via SA historical biomass and yield will be estimated for the period 2001 to 2020. 

Scenarios for early and late sowing and the impact on yield in relation to recent climate change projections 

based on representative concentration pathway (RCP 4.5 and RCP 8.5) will be evaluated. The sensitivity 

of biomass to rainfall and temperature during the phenological stages will indicate critical periods that 

influence the final yield. It will give us an insight about the temporal dynamics of crop production and the 

influence of phenology variation over time.  
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4.3. Objective  
The objective of this study to analyze the spatiotemporal variability of biomass and yield based on trends 

of phenological metrics and climate stress factors from 2001 to 2020 in Lake Tana basin. 

4.4. Research question  
• What are the dominant parameters and input factors for the spatial and temporal variability of 

biomass and yield? 

4.5. Data and Methodology  
4.5.1. Data  
Input parameters of SAFY and simulated LAI, DAM and yield obtained in Chapter 3 will be the main data 

for sensitivity analysis. Time series phenology derived from Landsat-MODIS image fusion in Chapter 2 

will be used to run the crop estimation model over the entire study area and over time. Temperature and 

rainfall data will used to analyze biomass and yield sensitivity and uncertainty caused by variability 

temperature stress effect and water stress factor.  

4.5.2. Method of Analysis  
The analysis include the quantification of stress factors and SA of model outputs to input parameters. SA 

of the SAFY model to inputs and parameters based on a one factor at a time (OAT) method will be 

employed. Based on the SA result, biomass productivity and yield will be simulated for the period between 

2001 and 2020. Inter annual variation of biomass productivity will be compared with seasonal integrated 

NDVI/EVI trajectories. The overall workflow of the study is illustrated in Figure 6. 

 

Figure 6: Methodological workflow of objective four 
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Input parameters related with spatial and temporal variation 

Input parameters and stress factors responsible for spatial and temporal variation of biomass and yield 

including climate (temperature and rainfall), as well as phenological parameters (Do, EOS and DOS) will 

be characterized and mapped across the entire study area and for the period 2001 to 2020. Temperature 

stress which is part of SAFY model will be calculated based on critical temperatures (Tmax, Topt Tmin) 

and degree of the polynomial function (β) that defines the stress temperature function for major crops 

according to (Duchemin et al., 2008). On the other hand, crop water stress (Ws) which is not included in 

the original model will be considered according to (Duchemin et al., 2015) to assess the influence on the 

model performance in the context of the study area. Rainfall will be accumulated dekades before crop 

emergence to senescence to assess crop response to water availability. 

Phenology parameters that include day of emergence (Do), EOS and DOS will be evaluated across space 

and time for SA. Do represent the effect of variability of sowing date that will be analyzed based on the 

SOS parameter adjusted according to data acquired from the field and farmers report of sowing date 

evaluated in the Chapter 1 of this study. Similarly, DOS and EOS during the study period (2001 to 2020) 

will be identified to parametrize the sum of senescence temperature (Stt). The temporal variation of PAR 

affecting APAR hence biomass accumulation. Therefore, APAR variation could be determined by variation 

in phenological stages or LOS. 

Selectivity analysis  

The SA aims at identifying the most and least influential model parameters for efficient simulation of the 

crop model. It may be also possible to perform a simple LUE model directly by evaluating model 

parameters, which is important for large area applications. In this study a SA using the OAT method 

(Campolongo et al., 2007) will be used since the number of parameters used in SAFY model is fairly small. 

Thus, the analysis focuses on how the model is sensitive to variation of GLAI and phenology determined 

from fused images as well as stress factor (Ta and Ws) variability. DAM and simulated GLAI will be 

considered as output reference to investigate the influence of phenological variation and other input 

parameters derived from fused Landsat-MODIS product. The model will be executed based on different 

combinations of input parameters and scenarios. For instance, the productivity response (DAM, LAI 

simulated) due to variability in the SOS, LOS and DOS across different environment (highland crops, crops 

on moderate topography) and the effects of early and late sowing will be investigated. The response of the 

parameters or factors may also vary in the wet and dry years and at different stages of the growing season. 

The level of influence of parameters will be determined based on relative sensitivity measure of mean and 

standard deviation in which larger mean indicates the parameter is influential as proposed by (Morris, 1991) 

and improved in (Campolongo et al., 2007). 
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Time series biomass and yield prediction 

After important limiting and stress factors identified through SA, the SAFY model will be used to simulate 

time series DAM and yield over the study period for the period from 2001 to 2020. Once, the crop model 

will be calibrated for the period 2019 and 2020 and dominant parameters selected through SA, it will be 

applied to simulate the historical yield patterns. The patterns of variation will be analyzed across space and 

time. The performance in detecting inter annual and spatial variability will be evaluated across uniform 

environment using district level production statistics.  

Apart from the historical production, the likelihood of phenology and yield deviation will be compared with 

respect to predicted temperature and rainfall change for near range. Future climate variables based RCP 4.5 

and RCP 8.5 of the IPCC emission scenarios and different sowing date (depending on the historical trend) 

will be compared to get an insight about future impact of temperature and rainfall variability on phenology 

and crop yield of the major crops under investigation. 

4.6. Expected output 
• Ranking of model parameters to run the model with few parameters for regional scale application 

• Time series crop biomass and yield prediction 

Time plan  
Table 3: Tentative Time plan of the research 

 No Activities 2018 2019 2020 2021 2022 
3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 

1 PhD proposal development and Qualifier                 
2 Literature studies                  
3 First round field data collection                 
4 Draft journal article write-up on trend of 

phenology (objective 1) 
                

5 National workshop presentation                 
6 Publication on objective one                  
7 Data analysis and interpretation of objective 2                 
8 Presentation on international workshop                  
9 Publication of the second objective                 
10 Second round field data collection                 
11 Data analysis and interpretation of the third 

objective  
                

12 Publication of third objective                 
13 Analysis and interpretation of objective four                 
14 Submission of forth objective for publication                 
15 Submission of thesis                  
16 Admission to Defense                  
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Expected issues  
• Data availability and quality: quality of climate data, crop mask and number of cloud free images 

• Availability of field instrument to collect biophysical properties (LAI analyzer)  

• Transportation and access to sample fields 

Publications 
These papers are expected to be published in the following journals 

• Remote Sensing 

• Remote Sensing of Environment 

• International Journal of Applied Earth Observation and Geoinformation 

• IEEE Transactions on Geoscience and Remote Sensing 
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