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Abstract  

Reliable weather and climate predictions at sub-seasonal-to-seasonal timescales have significant societal 
and economic impacts. This can be possible mainly by investigating the interaction among the atmosphere, 
land surface and the slowly varying ocean surfaces temperature. In Ethiopia, in general, the weather and 
climate prediction skills are very low and unreliable. Besides, catchment level hydrometeorological 
responses at seasonal and sub-seasonal temporal scale are not well investigated. Dependence on such 
weak predictions and exposure to climate risk characterize the livelihoods of substantial parts of Ethiopia’s 
population; and frustrate efforts to sustainably intensify agricultural production, reduce poverty and 
enhance food security. Though there are few studies that have shown statistical associations among the 
Ethiopian JJAS rainfall, remotely SST anomalies and regional (local) atmospheric circulation, the prediction 
skills are inconsistent both spatially and temporally. This might be due to the fact that the Northern 
Ethiopian climate system is complicated because of numerous climate driving factors interaction and 
complex topography. In such a region, the interaction and topographic complicity can be better 
understood by employing either hybrid models (by combining statistical with numerical models) or coupled 
numerical models such as coupling the ocean with the atmosphere and/or the atmosphere with the 
terrestrial system. This research is, therefore, set-out to improve the prediction skill of the main rainy 
season (JJAS) and river flow with a lead time from 10 days up to 90+ days, mainly by combining statistical 
analysis with coupled numerical prediction models. The overall study will be conducted with three Research 
Objectives (RO). First, the teleconnections between the major global climate driving factors and seasonal 
and intraseasonal rainfall variation over Northern Ethiopia will be investigated. Next, a numerical model 
(WRF model) that couples the ocean with the atmosphere will be customized as a regional/local climate 
model for seasonal and sub-seasonal rainfall prediction over Northern Ethiopia. Following the optimization 
of the model, as the study will be conducted in an area with a complicated climate system and complex 
topography, the sensitivity of initial and boundary conditions such forcing initials from different GCM 
products, ocean-atmospheric variables (from RO1) and terrain complexity in reproducing the JJAS rainfall 
will be assessed. Finally, a joint atmospheric-terrestrial modelling (WRF-Hydro model) for seasonal and 
sub-seasonal river flow and soil moisture prediction in the Upper Tekeze river basin will be conducted. At 
every step of modelling, the performance of the models will be assessed using a series of error statistical 
methods. The main expected outputs from this research will be the teleconnections of oceanic-atmospheric 
variables with JJAS rainfall variations; and improved seasonal and sub-seasonal rainfall, river flow and soil 
moisture prediction models.  

 

Keyword:  Teleconnection, sub-seasonal-to-seasonal prediction, JJAS rainfall Ethiopia, SST, Zonal Wind, 
Terrain complexity, initial and boundary conditions, WRF model and Coupled WRF-Hydro modelling 
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1. Introduction 

1.1. Background  

Weather is among the critical factors which can strongly influence the socio-economy of a given 

community (Aggarwal, 2013; Frédéric et al., 2012). Understanding weather and climate characteristics of 

the past and future is essential for different climate-sensitive sectors such as water resources, agriculture 

and health. Future weather forecast based on the initials of the atmosphere and boundary conditions of 

the land surface (White et al., 2017) is widely established with the aim to benefit the end-users/producers. 

Currently, end-users are demanding reliable forecasts of both direct meteorological parameters and 

derived information (i.e., extreme events and the degree of their severities) for better preparedness, yield 

production and management (Klemm and McPherson, 2017). However, due to the chaotic nature of the 

atmospheric system, reliable and accurate predictions of the future hydro-meteorological components at 

longer timescales is highly challenging (Schepen et al., 2012). The short-medium weather forecasts ( < 10 

days)  are in a more advanced way that works as an operational forecasting system for mobiles phones, 

televisions and computers everywhere in the world (WMO, 2018). The long-range (climate) predictions  

(> 30 days) are also among the widely established methods with relatively fair prediction skills (Frédéric 

et al., 2012; White et al., 2017) which are employed in different management sectors such as climate 

hazards (Murphy et al., 2001), agricultural production (Brown et al., 2018; Hoogenboom et al., 2007; 

Klemm & McPherson, 2017; McIntosh et al., 2007; Zinyengere et al., 2011), health (Harrison et al., 2008) 

and  water resource (Harrison et al., 2008; Nijssen et al., 2001; Wilby et al., 2004; Wood et al., 2004). For 

instance, Zinyengere et al. (2011) used seasonal climate forecasts in Zimbabwe to improve maize 

production which helped to achieve remarkable results.  Nevertheless, the extended-range predictions 

that fill the gap between short weather forecast to long-range climate prediction are stated as 

"predictability desert" (Frédéric et al., 2012; Robertson & Tippett, 2017; White et al., 2017) because of 

less attention and its difficult timescale to predict. This prediction timescale is worst in areas with 

complicated climate system and less computing resources like Ethiopia (Nicholson, 2014), and even for 

weather and seasonal climate predictions. 

In Ethiopia, since late 1900s, some studies (Camberlin et al., 2001; Camberlin & Philippon, 2002; Degefu 

et al., 2017; Diro et al., 2008, 2011a, 2011b; Diro et al., 2012; Funk et al., 2016; Gleixner et al., 2017; 

Stephanie et al., 2017; Kerandi et al., 2018; Korecha & Barnston, 2007; Korecha & Sorteberg, 2013; 

Nicholson, 1986, 2014, 2015; Segele & Lamb, 2005; Segele et al., 2009; Segele et al., 2015; Seleshi & Zanke, 

2004; Shanko & Camberlin, 1998; Zaroug et al., 2014) were conducted to investigate the predictability  of 

the seasonal rainfall variations. Many of the research outputs (e.g. Degefu et al., 2017; Diro et al., 2008; 

Gissila et al., 2004; Korecha & Barnston, 2007; Korecha & Sorteberg, 2013) are based on statistical 

methods. Most of these researches concluded that the main rainy season (locally known as Kiremt which 

spans from June to September-JJAS) in Ethiopia can be forecasted 2-3 months in advance mainly based 

on Sea Surface Temperature (SST) anomalies of the El-Nino Southern Oscillation (ENSO), Indian Ocean 

Dipole (IOD), and Northern Atlantic Ocean (NAO) while including the regional and local atmospheric 

variables increased the skill of prediction. The SSTs were preferred as key prediction factor because they 

exhibit a relatively slow change over time and are capable in coupling the ocean and the atmosphere (Diro 

et al., 2011b; Kumar et al., 2013). For example, Diro et al. (2008) investigated that the Kiremt season in 

Ethiopian is negatively correlated with Sea Surface Temperature (SST) anomalies of ENSO and IOD, while 

the JJAS rainfall in the northern part of Ethiopia positively correlated with the Eastern Equatorial Atlantic 

(Gulf of Guinea). While Korecha and Barston (2007) favoured ENSO only with northern summer. They 
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emphasized that the ENSO oscillation has a negative impact on Ethiopian rainfall. This implies a dry JJAS 

rainfall is directly associated with the warmer ENSO. 

Moreover, recent studies (Nicholson, 2014, 2015, Segele et al., 2009; Segele et al., 2015; Zeleke et al., 

2013) revealed the predictability of the Ethiopian JJAS rainfall is rather strongly associated with the 

regional and local atmosphere circulations. As per Segele et al. (2009), the Ethiopian Kiremt rainfall 

variation is more linked with the major Wavelet-Filtered atmospheric components such as zonal winds 

and pressure highs. Though the degree of atmospheric factors is strongly influenced by the ENSO and 

Quasi-Biennia Oscillation (QBO) anomalies, their direct link with the regional monsoon system strongly 

affects the JJAS rainfall of East Africa. In fact, the skill of prediction can be greatly improved when both 

the regional atmospheric variables and SST anomalies are combined (Nicholson, 2014). For many years, 

the Ethiopian JJAS rainfall variation was associated with the annual migration of the Intertropical 

Convergence Zone (ITCZ) from 15oN to 15oS and moving back from the southern hemisphere to the 

northern hemisphere (Diro et al., 2008; Nicholson, 1986, 2014; Segele & Lamb, 2005). For instance, 

Northern Ethiopia gets JJAS rain when the ITCZ is starting moving from 150N in June, while southern 

Ethiopia is having spring rain during the passage of ITCZ to the southern hemisphere in April (Segele et al., 

2009). However, Nicholson (2018) has suggested that it is difficult to link the seasonal rainfall cycle of the 

Horn of Africa solely with the seasonal migration of the ITCZ. 

Considering the aforementioned sources of predictors, coupling the ocean-atmospheric variables for 

Ethiopian JJAS rainfall be crucial to improve the prediction skills. The ocean-atmospheric variables can be 

regionalized from the General Circulation Model (GCM) hindcasts through either statistically or 

dynamically downscaling (Simon, 2008; Tang et al., 2016). Statistically downscaling refers to the use of 

regional simulation models based on the statistical relationships between the large-scale ocean-

atmospheric variables and observed variables. While the dynamically downscaling of GCMs refers to the 

use of the initial and boundary conditions from GCM products for forcing and verifications of Regional 

Climate Model (RCM). In the Horn of  Africa, particularly in Ethiopia, efforts on seasonal rainfall forecasts 

based on coupled global climate generating models (Abdelwares et al., 2017; Degefu et al., 2017; Gleixner 

et al., 2017; Stephanie et al., 2017; Zaroug et al., 2014; Zeleke et al., 2013) have shown great promises. 

Degefu et al. (2017) demonstrated the ability of the coupled atmosphere-ocean Global Circulation Models 

(AOGCMs) such as Hadley Centre Global Environmental Model, version 2 (HadGEM2) and Hadley Centre 

Global Environmental Model, version 3-Global Atmosphere 3.0 (HadGEM3-GA3.0) models to forecast the 

Ethiopian Kiremt rainfall in relation to seasonal SST anomalies. Gleixner et al. (2017) used ECHAM5 model 

to investigate the physical link between SST anomalies of ENSO and the Ethiopian Kiremt rainfall, while 

Zeleke et al. (2013) investigated the teleconnection of the Ethiopian JJAS rain with zonal winds such as 

low-level winds (850-100hPa) and upper-winds (100-300hPa) using fourth generation RCM (ReCM4) 

model. These use of ReCM4 have shown good improvement in the forecast skill and have recommended 

(Zaroug et al., 2014) to be used as a regional model for seasonal rainfall prediction over East African. This 

has been further confirmed by Gleixner et al. (2017) in that the correlation between simulated rainfall and 

JJAS rainfall over Northern Ethiopia has been over 53%, while Zeleke et al. (2013) concluded that the use 

of ReCM4 model exhibits good correspondences, with a correlation around 60%, both spatially and 

temporally.  

The use of dynamically joint ocean-atmospheric climate models such as RCM prediction might be more 

realistic and greatly improved the skill of the predictions (Simon, 2008). For instance, the Weather 



3 
 

Research and Forecasting (WRF) model (Skamarock et al., 2008) with the European Centre for Medium-

Range Weather Forecasts (ECMWF) reanalysis products as initial and boundary conditions were used as 

regional climate model for East Africa (Abdelwares et al., 2017; Kerandi et al., 2017; Pohl et al., 2011). The 

result has revealed that the seasonal forecast skill is strongly improved with a 50-80% correlations to the 

in-situ observations. Numerical weather and climate prediction models involve a great deal of skill to 

predict the future phenomenon of the climate system compared to statistical prediction methods (Simon, 

2008; Warner, 2011). The statistical models require low computing resources compared to dynamic 

models. The disadvantage of statistical prediction models is, however, the need for long recorded data as 

they are established based on the relationship of past histories. In East Africa, the sparse distribution 

meteorological stations and poor quality of observed data are serious drawbacks to use statistical 

downscaling (Kerandi et al., 2018). Regardless of the demand for high computing resources, dynamically 

coupled ocean-atmospheric models have superiority over that of statistical prediction methods and the 

dynamic atmospheric models (Simon, 2008).  

In line to this, the issue of good or bad Kiremt season depends on the time of onset and secession, the 

frequency and duration of wet and dry spells and indeed, the amount of rainfall (Segele & Lamb, 2005). 

In Ethiopia, a series of extreme events (droughts) have happened in the past (Gebrehiwot et al., 2011;  

Zeleke et al., 2017). These extreme seasons are correlated with major changes in atmospheric and ocean 

circulation (Nicholson, 2014; Zeleke et al., 2017). For instance, the drought study by Zeleke et al. (2017) 

has revealed that the trends of the Ethiopia drought can be predicted in relation to the SSTAs of ENSO. It 

is expected that reliable and accurate weather and climate prediction can improve the simulation and 

predictions of hydrological variables (Givati et al., 2012; Verri et al., 2017). To this end, simulating the 

water balance components for a given basin by coupling the atmosphere with the terrestrial condition 

has shown great improvements (Givati et al., 2012; Kerandi et al., 2018; Srivastava et al., 2015). Especially, 

in arid and semiarid areas where the level of soil moisture is strongly governed by rainfall variations 

(Kerandi et al., 2018), joint atmospheric-hydrological modelling significantly improves the quality of model 

simulations.  

Therefore, the aim of the study is to develop/customize site-specific numerical models that enable 

seasonal and sub-seasonal rainfall and river flow prediction with a lead time of 10 days to four months for 

the Upper Tekeze River Basin, Northern Ethiopia. In World Meteorological Organization (WMO) bulletin 

61 (Frédéric et al., 2012), understanding the mechanisms and the model physics, evaluating the skills and 

estimating uncertainties of sub-seasonal to seasonal (s2s) predictability of the weather and climate have 

been mentioned as key research priorities. This is because decision making in many sectors such as 

agriculture, water management, insurance, and industry is depending on this timescale. This research is 

part of the EENSAT project (EENSAT, 2018) and in line with the Ethiopian Agricultural Transformation Plan 

in that, the issue of weather as a critical factor for sustainable agriculture production and water resources 

management is addressed.  

1.2. Research problem and Justification  

In Ethiopia, a strategy on reducing land degradation and transforming agricultural productivity through 

improved water management have had implemented since the 1990s (ENPC, 2016; Lakew et al., 2005). 

As a result, various water infrastructures (Berhanu et al., 2014) such as water harvesting technologies, 

hydropower, and small-scale irrigation schemes had been established. These implemented water 

harvesting technologies were planned to have a profound influence on hydrological response and, in 
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general, on the socio-economy of the country. However, occurrences of frequent droughts coupled with 

the unpredictable climate variables especially rainfall and runoff were indicated to be the major threats 

for sustainable development and management (Gebrehiwot et al., 2011).  

The weather system in Ethiopia is very complex because of the seasonal and interannual variability 

influenced by numerous atmospheric and oceanic factors and highly complex topography (Diro et al., 

2012; Girma et al., 2016; Nicholson, 2014). Due to this fact, the rainy seasons of the country widely vary 

from place to place (Girma et al., 2016) but are generally categorized as (1) Kiremt: June- September; (2) 

Belg: February - May and (3) Bega: October -January (NMA, 2018). Understanding the characteristics of 

the main rainy season (JJAS rainfall) and reliable predictions are essential because (1) predicting the JJAS 

season rainfall means covering 60% of Ethiopia’s main rainfall season-Kiremt (Segele & Lamb, 2005). This  

also extends to the Sahelian countries to the west and east to the Horn of Africa (Nicholson, 2014, 2015; 

Segele et al., 2009); 60-85% of the annual average rainfall (Figure 4.2) is collected from the Kiremt season 

(Segele & Lamb, 2005); (2) more than 85% of the Ethiopian population depends on rain-fed agriculture 

(Degefu et al., 2017; Diro et al., 2011a; Gleixner et al., 2017) mainly from this season; and (3) 85-90% of 

the annual crop yield are harvested from this season (Gissila et al., 2004).  

The Ethiopian seasonal rainfall distribution has been classified into different homogenous regions (Figure 

2.2). For instance, the Ethiopian rainfall seasonality has been classified into 14 regions (Zeleke et al., 2013); 

eight regions (Girma et al., 2016); eight regions but with different geographical locations (Korecha & 

Barnston, 2007); five regions (Diro et al., 2008, 2011a, 2011b); five regions but with different geographical 

location (Gissila et al., 2004): four regions (NMA, 2018): three regions (Degefu et al., 2017); and two 

regions (Nicholson, 2014, 2015). None of the studies has agreed to a common regionalization (Figure 2.2). 

For example, the Northern Ethiopia rainfall (Figure 2.2 green box) is regionalized under Cluster I (Gissila 

et al., 2004) which covers only the northern part of the country, whereas Diro et al. (2008) divided the 

region into two zones: Zone-I and Zone-IV. In Diro et al. (2008), the Zone-I covers the northwest part of 

Ethiopia, while the Zone IV covers half of Tigray, Afar, and eastern Amhara regions up to northern part of 

Oromia. Moreover, the National Meteorological Agency (NMA) forecasting system (NMA, 2018) for 

Northern Ethiopia rainfall (particularly for Upper Tekeze river basin) uses a completely different cluster 

than the above studies (Figure 2.2F).  

The demand for skilful hydro-meteorological forecasts is highly increasing for site-specific decision-making 

in several sectors. In Ethiopia, in general, there is low skill regarding seasonal rainfall and river flow 

predictions. For seasonal (long-range) rainfall predictions, the NMA uses the analogue year method (NMA, 

2018) based on trend analysis and statistical assessment of SST of ENSO (Korecha & Sorteberg, 2013). This 

could be since the model requires less computational resources and simplicity. The skill for the seasonal 

prediction is categorized from weak to moderate with a Ranked Probability Skill Score (RPSS) of 10% and 

is biased towards nearly-normal rain (Korecha & Sorteberg, 2013). This indicates that the forecasting 

system fails to properly capture the rainfall events below (drought) and above (flooding) normal 

categories. For example (Figure 1.1), during the drought year of 2009 over Northern Ethiopia, the Ethiopia 

NMA forecasts around 25% of its tercile probability as below normal precipitation, while the observed 

shows the precipitation below normal condition was more than 80%.  



5 
 

  

Figure 1.1. comparison between the total observed and predicted Kiremt season rainfall (on the right) for 

region I (green box on the left), Northern Ethiopia. Adapted from Korecha and Sorteberg (2013) 

This might be due to the fact that, for the Ethiopian climate system, a prediction for all these different 

regions with a single method becomes unreliable and therefore has a low predictive skill (Degefu et al., 

2017; Gissila et al., 2004). In addition, seasonal predictions over any region are incomplete without proper 

treatment of the land surface, oceanic and atmospheric parameters (Camberlin et al., 2001; Diro et al., 

2008). In order to improve the forecast, detailed studies with better methods such as using hybrid models 

(Schepen et al., 2012) that considers most underlying factors of the ocean and atmospheric variables need 

to be considered (Camberlin et al., 2001; Diro et al. 2008; Zeleke et al. 2017). The use of the hybrid model 

(section 2.3) for seasonal and sub-seasonal rainfall prediction over Northern Ethiopia is limited. This calls 

for a comprehensive study on all the teleconnections (potential predictors), i.e., which indicator and how 

strongly these are associated with Ethiopian Kiremt rainfall is essential. It has been reported (Huang & 

Gao, 2017; Jee & Kim, 2017; Noble et al., 2017; Quitián-Hernández et al., 2018) that , in areas with complex 

climate system, combining use of the statistical models (i.e., selecting appropriate predicator in relation 

to predictands) with dynamical models can significantly improve the skill of predictions. This was 

supported by Korecha & Sorteberg (2013) in that the NMA prediction skill can be improved if all the 

climate driving factors associated to the Ethiopian rainfall are considered using numerical models.  

For JJAS rainfall predictions,  some studies in East of Africa, for example (Degefu et al., 2017; Diro et al., 

2008, 2011b, 2011a; Nicholson, 1986, 2014, 2015; Zeleke et al., 2013), have developed statistical methods 

based on teleconnections. These studies concluded that the JJAS rainfall prediction can be possible in 

relation to three teleconnections: (1) remotely SST anomalies, (2) regional and local atmospheric variables 

and (3) combining the SST with the atmospheric variables. Majority of the studies (e.g. Korecha & 

Barnston, 2007; Degefu et al., 2017; Diro et al., 2008, 2011a, 2011b) have agreed that the JJAS rainfall 

predictability can be mainly based on remotely SST anomalies of ENSO and IOD, and while the others (such 

as Segele et al., 2009; Zeleke et al., 2013) have argued that the JJAS rainfall variations are strongly 

correlated with regional and local atmospheric variables such as Tropical Eastern Jet (TEJ) and other zonal 

wind pressures than that of SST anomalies. These prediction methods have shown good correspondence, 

up to 60-80% correlations but with high temporal and spatial inconsistency. These inconsistencies could 

be due to the fact that the statistical methods were developed based on the relationship between the 

predictors and predictands from different regions, with less than 50% correlations between observed 

variables within the clusters (Diro et al., 2008). The general conclusions from these studies are that the 
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skill of forecasts was improved when SST anomalies combined with that of the regional and local 

atmospheric variables are used. This has been, for example, confirmed by Nicholson (2014) in that the JAS 

rainfall over the Horn of Africa is strongly linked with SST anomalies of ENSO (-0.71 correlation) and sea 

level pressure in the central equatorial Indian ocean (-0.57) and atmospheric circulations such as zonal 

winds (200mb) in the western equatorial Indian ocean (-0.61). Though the ENSO contributes 49% of the 

variations, the overall predictability was enhanced while the SSTs combined with the atmospheric 

variables, with a correlation up to 81%.  Hence, coupling the ocean-atmospheric variables using either 

numerical (Warner, 2011) or a hybrid model (Schepen et al., 2012) can be required to incorporate all the 

possible predictors for JJAS rainfall in Northern Ethiopia. 

For the last 50 years, Ethiopia suffered from severe and recurrent droughts, and most of these recurrent 

droughts occurred during the main rainy season (Segele and Lamb, 2005). These extremes have had a 

significant impact on agriculture, hydrological states and thus the food security in Ethiopia. For instance, 

in Northern Ethiopia, the drought of  2009 (Korecha & Sorteberg, 2013), 2010/11 (Nicholson, 2014)  and 

2015 (Funk et al., 2016) have created a substantial crisis in the country. However, the effort to investigate 

the severity, magnitude and when it will happen again is insufficient. Although there is little, we can do to 

prevent droughts and/or flooding, we can improve our preparedness for these events which in turn relies 

on the availability of sound information. While there are more advanced prediction models at high 

resolutions such as numerical weather and climate models (Simon, 2008; Stensrud, 2007; Warner, 2011), 

except for the short-range weather forecasting, however, the NMA operational forecasting is still suffering 

from unreliable and inaccurate forecasts. For example, the recent seasonal rainfall and river flow forecasts 

for JJAS 2018, was not very well captured by NMA. There was excess rain and consequently flooding. As a 

safety measure, a lot of water was discharged from the Tekeze dam to prevent overtopping (TigrayTV, 

2018a). The local media (TigrayTV, 2018b) has broadcasted that more than 180 ha of irrigated lands were 

damaged due to the excess water released from the dam in a plan to rescue the dam. To address these 

issues, a comprehensive investigation of the Ethiopian Kiremt season variability, its teleconnections, and 

the skill to predict a few months in advance for efficient operating water infrastructures and effective 

mitigating disasters are essential. 

At this moment, the gap between subseasonal-to-seasonal prediction is not investigated and neither used 

by NMA during operational forecasting. There is also limited progress on dynamical prediction for the 

greater Horn of Africa region, particularly for Ethiopia despite the availability of high technologies 

elsewhere in the globe. Moreover, research results regarding the ocean-atmosphere-land surface 

interaction in Northern Ethiopia from a few weeks to a few months in advance are not available. 

1.3. Significance of the study  

The Ethiopian development strategies have a high demand for reliable and accurate hydro-meteorological 

time series (i.e., past-present-future) data for proper designing, implementing and sustainable monitoring 

of agricultural and water infrastructure schemes. However, the field of hydro-meteorology is among the 

data scarce sectors of the country. The number of meteorological stations is insufficient (sparsely 

distributed network) with many gaps and it is also hard to find long-term streamflow data even for the 

major rivers. These gaps can be filled by generating synthetic data through research and technology 

adaptations from the best experiences of the international community. Nowadays, there are various 

community based open resources, such as WRF and WRF-hydro models, that can be utilized in a wide 

range of applications (Powers et al., 2017) and customized depending on the regional and local climate 
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characteristics (Abdelwares et al., 2017; Pohl et al., 2011). To this end, this research will work in line with 

the demand which is listed as follows: 

➢ The seasonal and subseasonal rainfall forecasts/anomalies over Northern Ethiopia can be 

improved, simulated and forecasted, based on the teleconnection with the ocean-atmospheric 

anomalies. 

➢ Seasonal and sub-seasonal rainfall forecast for Northern Ethiopia in few weeks to few months 

in advance can be further improved using hybrid models by combining the statistically 

correlated teleconnection of the ocean-atmospheric variables with numerical prediction 

models. For this, there are several research and experiences elsewhere (internationally and few 

attempts locally).  

➢ Streamflow for major rivers can be reliably and accurately simulated with few weeks to four 

months in advance by understanding the seasonal and sub-seasonal weather variations 

coupling with the terrestrial characteristics such as land use/land cover dynamics.  

➢ Extreme events such as seasonal droughts (both agricultural and hydrological) are among the 

major threats to the Northern Ethiopia that can be attributed to extreme weather variations 

leading to severe drought. Understanding and providing information regarding the 

spatiotemporal characteristics mainly in relation to extreme weather events with a lead time of 

10 days to four months is possible. For this, there are available tools and technologies  

2. State-of-the-art seasonal and sub-seasonal prediction 

Reliable and accurate hydro-meteorological prediction in lead time of a few months ahead is being at the 

centre of interest for many researchers (e.g. Aggarwal, 2013; Parker et al., 2008; Siddique et al., 2015; 

Vitart et al., 2014). Accurate prediction requires a good understanding of the physical laws of the ocean-

atmospheric-land surface interactions and well representations of the weather phenomenon (White et 

al., 2017). However, the issue of reliable and accurate hydro-meteorological forecasts at seasonal and 

sub-seasonal timescales is highly challenging and “a distant dream” for scholars (Aggarwal, 2013; Schepen 

et al., 2012). This is due to the fact that climate variables are the result of the chaotic nature of the 

atmosphere-land surface-ocean system interactions (Kirtman et al., 2014). Recently, there are various 

success stories of weather and climate predictions with different lead time (e.g., Guo et al., 2014; Murphy 

et al., 2001; Schepen et al., 2012; Segele et al., 2015). Based on the predictability skill and sources of 

predictors (Figure 2.1), these weather and climate forecasts can be categorized (Tian et al., 2018; White 

et al., 2017) as (1) weather forecasting (one-10 days), (2) sub-seasonal (weather-to-climate) prediction 

(10 –30 days) and (3) seasonal climate prediction (30-90+days). White et al. (2017) illustrated that the 

predictability of short-medium range forecasting is mainly due to initial conditions from the atmospheric 

circulations, while for seasonal predictions, the initial condition of the ocean-land surface interactions 

such as remotely SSTAs of ENSO is found crucial. The sub-seasonal prediction fills the gap in between 

these two ranges of forecasts. The predictability of sub-seasonal-to-seasonal (s2s) depended on the initial 

conditions of the atmosphere such as Madden-Julian Oscillation (MJO) and QBO, and the boundary 

conditions of the ocean-land surface interactions such as soil moisture and SSTs of ENSO, IOD and  Atlantic 

Ocean Dipole (NASEM, 2016; White et al., 2017).   

Weather and seasonal climate prediction are well investigated (Frédéric et al., 2012). However, the weekly 

averages which extended from medium-range weather prediction to long-range climate prediction are 

not being well explored (White et al., 2017). This shows that prediction the ocean-atmospheric-land 
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surface interaction with the timescales of a few weeks in advance is very difficult. Nevertheless, there is 

great progress to bridge the gap between the weather and climate prediction i.e., at s2s scale (Frédéric et 

al., 2012, 2018; Olaniyan et al., 2018; Tian et al., 2017). Compared to seasonal climate forecasts, 

predictions of weather-to-climate variables have large societal benefits for many management decisions 

such as water resources and agriculture (Frédéric et al., 2012; Tian et al., 2017; Vitart et al., 2014; White 

et al., 2017). For example, the agriculture sector is strongly depending on two weeks to 3 months’ time 

intervals of the rainfall amounts, intensity, onset and recession, and its extreme (Vitart and Robertson, 

2018).  

 

Figure 2.1: Climatological prediction ranges from short-range weather forecasts to long-range seasonal 

climate predictions and potential sources of predictability (White et al. 2017) 

Generally, weather and climate predictions at seasonal and sub-seasonal timescales can be excuted using 

three approaches (Aggarwal, 2013; Diro et al., 2012; Wang et al., 2012): (1) statistical, (2) numerical 

(dynamic), and (3) Hybrid (combing the statistical and dynamic model). 

2.1. Statistically seasonal and sub-seasonal prediction 

Statistical methods are models that predict the future behaviour of the climate system based on a past 

relationship with the atmosphere-ocean parameters (Aggarwal, 2013;  Diro et al., 2011a; García-Díez et 

al., 2013). Seasonal prediction using statistical methods is among the widely utilized method of prediction 

(Djibo et al., 2015; Funk et al., 2014; Guo et al., 2014; Sittichok et al., 2016; Villarini & Serinaldi, 2012). For 

instance, for East Africa seasonal and interannual rainfall prediction, several statistical rainfall prediction 

studies (Camberlin et al., 2001; Camberlin and Philippon, 2002; Indeje et al., 2000; Kerandi et al., 2017; 

Nicholson, 1986, 2014, 2015), and particularly for Ethiopia  (Camberlin,1997; Degefu et al., 2017; Diro et 

al., 2008, 2011a, 2011b; Elsanabary & Gan, 2012;  Gissila et al., 2004;  Korecha and Barnston, 2007; 
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Korecha and Sorteberg, 2013; Parker et al., 2008; Segele and Lamb, 2005; Segele et al., 2009, 2015; Seleshi 

and Zanke, 2004; Shanko and Camberlin, 1998) have been conducted. These studies are based on the 

statistical relationship of oceanic variable and rainfall and/or oceanic-atmospheric variables and rainfall. 

These statistical relationships are developed using four approaches: (1) analogue method (the one that 

the NMA uses), (2) weather generator models (GCMs and RCMs), (3) regression models and (4) 

discriminant analysis methods. Of these, the regression models and statically downscaling methods are 

among the widely applied methods because of their small demand for computing resources and its 

relatively easy to understand (Tang et al. 2016).  

The result from these studies have revealed that the JJAS rainfall over East Africa, particularly over 

Ethiopian, is strongly associated either with remotely oceanic anomalies such as SSTs of ENSO, IOD and 

AOD and/or the regional and local atmospheric circulations such as the position of ITCZ, zonal winds like 

Tropical Easterly Jet (TEJ) and pressure highs such as Mascarenes and St. Helena. More specifically, they 

have found that the JJAS rain predictability greater than 2-3 months in advance is difficult. For instance, 

Diro et al. (2008, 2011a) have performed detailed investigations on the teleconnections between the 

Ethiopian rainfall and the oceanic region and the lag-time of the predictors across different regions. They 

used stepwise regression with two sets of predictors and 8 months lag-time. Their findings exhibited that, 

for example, the JJAS rainfall in Northern Ethiopia is positively associated with the northwest Pacific Ocean 

and the Gulf of Guinea, with a lag time of 1-2 months. More noticeably, almost all the studies have agreed 

that the prediction skill of these statistical methods is inconsistent both specially and temporally.  This can 

be because of the complicated climate system and complex topography over east Africa  (Diro et al., 

2011a; Korecha & Barnston, 2007; Nicholson, 2014; Zeleke et al., 2013). To consider the spatial 

complications into account, all statistical studies for rainfall prediction have used regionalization, with no 

one region in common (Diro et al., 2008, 2011a; Gissila et al., 2004; Korecha and Sorteberg, 2013). It is 

expected that from different regionalization and different use of teleconnections, their findings (for 

example, for the same locations like at watershed level) is found different. For example, the JJAS rainfall 

in Northern Ethiopia (a  green box in Figure 2.2) has:  a weak but negative correlations with global SST 

anomalies of the of IOD and ENSO (Figure 2.2a: Gissila et al., 2004), a strong and positive relationship with 

northwest Pacific Ocean and Gulf of Guinea SST anomalies (Figure 2.2b: Diro et al., 2008); a negative 

correlation with  ENSO (Niño-3.4) SST anomalies (Figure 2.2c: Korecha and Sorteberg , 2013) ; and  a 

negative correlation with ENSO and IOD SST anomalies  (Figure 2.2e: Degefu et al., 2017). 

Statistical model outputs are less preferable by end users (Klemm & McPherson, 2017). They are 

expressed in two ways of probability displays: tercile/quartile maps and (2) the probability of exceedance 

(PoE) graphs (Klemm and McPherson, 2017). The tercile is a commonly used form of statistical 

prediction (Klemm and McPherson, 2017). Klemm and McPherson (2017) indicated that though the PoE 

graphs are less common, they are preferable than that of the tercile maps. The tercile maps have been 

criticized by end users for the facts that (1)  they do not clearly show the spatial details; (2) the  maps are 

not in user-friendly format for communications, (3) they lack enough skill to be used for decision making,  

(4) they do not have information on forecast uncertainty, and (5) they do not quantify how to deviate the 

forecast of below normal or above normal precipitation from that of the normal precipitation. This can be 

clearly observed in the NMA forecast for 2018 Ethiopian Kiremt rainfall (Figure 2.2f). For instance, the 

region in zone two from the top (Figure 2.2f) includes the wettest region from the West through the 

moderately wet in the middle to the driest part of the East Ethiopia with equal tercile probability of 40% 

above normal, 35% nearly normal and 25 % below normal. How representative are these probabilities in 
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such widely different geographical settings? These forecasts did not even clearly show how spatially 

varies, while, regions with relatively dry zones such as the Afar region have suffered from the low amount 

of rainfall. 

 

 
a(Gissila et al., 2004) 

 
b(Diro et al., 2008) 

  
c (Korecha & Sorteberg,  2013)  

d(Zeleke et al., 2013)  

 
e(Degefu et al., 2017) 

 
f(NMA, 2018) 

Figure 2.2 Regionalization of Ethiopian rainy season from different sources including ENMA (a-f).  The 

green box represents an arbitrary location of the study area. 

2.2. Numerical Weather and Climate Predictions (NWCP) 

Numerical weather prediction (dynamic modelling) refers to the forecasts based on the physics of 

atmospheric-oceanic interactions (Simon, 2008; Stensrud, 2007; Warner, 2011). This can be carried out 

by calibrating and validating raw outputs from global prediction models. Based on their initial and 
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boundary condition requirements, NWCP models are classified into two (Simon, 2008; Warner, 2011): (1) 

uncoupled climate models and (2) fully-coupled climate models. In an uncoupled climate model, 

atmospheric variables are the only parameters considered in the dynamic model while the lower 

boundaries are specified manually (Simon, 2008; Stensrud, 2007; Warner, 2011). Whereas in fully-coupled 

models, all the relevant components of the atmosphere and boundary conditions are modelled and 

predicted simultaneously (Aggarwal, 2013; Simon, 2008). Uncoupled models need less computational 

costs compared to that of the coupled model. Nevertheless,  the fully-coupled climate model provides the 

most realistic information on the climate system (Simon, 2008). The basic assumption in uncoupled 

climate models is that the effect of ocean parameters such as SSTs to atmospheric circulation is only one 

way. This assumption strongly deviates from the fact that the land surface variables influence the 

atmospheric climate and in turn, the atmospheric variability affects the ocean conditions (Kumar et al., 

2013; Simon 2008). Therefore, the fully-coupled model is more capable of producing better and reliable 

forecasts than uncoupled counterparts.   

For complex climate systems where the skill of prediction improves when the remotely SST anomalies are 

combined with the regional and local atmospheric circulation, fully-coupling dynamic models are very 

essential (Simon, 2008). Globally, forecasts based on fully coupled ocean-atmospheric circulation have 

shown significant skill improvements. For instance, the ECMWF at 1° horizontal, and L91 and L75 vertical 

resolutions  for ocean and  atmosphere, respectively (Stockdale et al., 2018), GFS at 0.25o horizontal and 

L64 vertical resolutions (GFS, 2018), CFSV2 at 0.2-2.5o horizontal and L64 (0.3hPa) vertical resolution (Saha 

et al., 2014), ECHAM6 at L47/L95 (800hpa) horizontal resolution (Stevens et al., 2013), GloSea5 at  

horizontal resolution in the atmosphere (N216–0.7◦) and the ocean (0.25◦), and  L85 vertical resolution 

(MacLachlan et al., 2015) and GEOS-5 at  1° × 1.25° horizontal and L72 vertical resolution (Borovikov et 

al., 2017) are among the widely applied large-scale weather and climate prediction models. Theses GCM 

models forecast basic climate components for a wide range of temporal scales, for example, from days to 

several months in advance. Moreover, the ECMWF (Vitart et al., 2014), and CSFv2 (Saha et al., 

2014) models have the potentials to predict climate variables at sub-seasonal timescale, up to 32 days 

and/or 3-4 weeks in advance. Olaniyan et al. (2018) evaluated the capacity of the ECMWF model to 

simulate the s2s atmospheric circulations that affect the monsoon in West Africa. They conclude that the 

ECMWF model is capable and reliable to predict the major atmospheric and oceans variables in West 

Africa. Saha et al. (2014) evaluated the forecasts from the CFSv2 model in that they concluded that the 

model has good skill for seasonal and sub-seasonal rainfall forecast in the United States and SST forecasts 

globally.  

The most difficult task in regional and local weather and climate prediction system at seasonal and sub-
seasonal timescale is to consider all climate components that could play a great role in predictions (Simon, 
2008; Stensrud, 2007). Dynamical downscaling of the initial and boundary conditions from GCM models 
to a finer resolution such as to regional and local climate may provide necessary information (Diro et al., 
2012). The downscaling provides improved local ocean-atmosphere information by nesting the coarser 
boundary condition with the smaller domains (Diro et al., 2012; Tian et al., 2017). This can be carried out 
either statistically or dynamically. For instance, in Ethiopia where the study area is found, the GCM 
products such as from ECMWF, ECHAM and GFS have downscaled into regional scales using different 
statistical and numerical models.  Stephanie et al. (2017) compared the capability of 11 GCMs including 
the ECMWF, ECHAM, and GFS to predict the Ethiopian Kiremt rainfall using statistical downscaling models. 
They have found that the ECMWF seasonal hindcasts have shown better skill to predict JJAS rainfall, with 
a correlation of 0.53. Tian et al. (2017) downscaled the CFSv2 daily forecasts for sub-



12 
 

seasonal precipitation prediction for which the regional model enabled to reproduce weather forecast up 
to 30 days in advance. Regardless of computing costs, dynamically downscaling of the ocean-atmospheric 
variables from GCM products using different regional models are among the reliable and relatively 
accurate forecasts (Simon, 2008). For example, dynamically downscaling of GCM products using:  WRF 
model for East and West Africa  seasonal precipitation and runoff simulation (Kerandi et al., 2018; Kerandi 
et al., 2017; Ratna et al., 2014; Siegmund et al., 2015),  for regional climate simulation in Canary 
Islands (Pérez et al., 2014), for streamflow prediction in Jordan river (Givati et al., 2012), and for meteo-
hydrological modelling in Italy (Verri et al., 2017); using the third generation Regional Climate Model 
(ReCM3) for Horn of Africa seasonal rainfall prediction (Diro et al., 2012); using National Centres for 
Environmental Prediction (NCEP) Regional Spectral Model (NCEP-RSM) for operational season climate 
prediction in Northern Brazil (Hong et al., 1999; Tang et al., 2016); using the MM5, COAMPS and WRF 
models for seasonal climate prediction in Northern America (Lu et al., 2011) have effectively 
demonstrated. 

Among other RCMs, the WRF model becomes the world’s widely acceptable and applicable mesoscale 

numerical model (Powers et al., 2017). The WRF model is the “next-generation mesoscale NWP system” 

which offers quite a range of applications and capacities (Powers et al., 2017; Warner, 2011). It is a 

community-based system developed for both atmospheric research and operational forecasting. The WRF 

model was publicly released since 2000 and has been maturely grown to afford a variety of earth system 

predictions such as climate and hydrology at regional and local spatial scales with wider temporal scales 

(Skamarock et al., 2008). In general, regardless its demand for high computing resources and quite several 

parameters, the model is more capable to address weather and climate variables at smaller atmospheric 

scales, dynamically coupling the ocean-atmosphere-land surfaces and link research to operational 

developments (Powers et al., 2017). Moreover, the WRF model emerges high-level numerical accuracy 

and scalar conservation properties compared to other RCM such as MM5 (Powers et al., 2017). 

2.3. Hybrid (combination of statistical and dynamical) predictions 

The Hybrid model denotes the combination of statistical and dynamical methods (Diro et al., 2011b; 

Schepen et al., 2012). This type of models usually used weather indicators/predictors statistically in good 

correlations with the observed rainfall (e.g. SSTs) and then used as input into a dynamical atmosphere 

model such as GCMs for seasonal and subseasonal rainfall forecasts.  Though the model is not widely used, 

some studies (e.g., Schepen et al., 2012; Segele et al., 2009; Vecchi et al., 2011; Wang et al., 2012) revealed 

that skills of prediction are greatly improved when the statistical methods are combined with that of 

dynamic models. Schepen et al. (2012), for example, combined statistical and dynamic forecast using 

Bayesian Model Averaging (BMA) for Australia seasonal rainfall forecast. The researchers demonstrated 

that the hybrid models have significantly improved the skill of prediction and are capable to capture the 

maximum spatial and temporal coverages of the rainfall forecast. 

2.4. Uncertainties in seasonal and subseasonal predictions  

Every seasonal and subseasonal prediction model suffers from biases i.e., the model forecasts deviate to 

some degree from that of the observed variables (Palmer et al., 2005; Simon, 2008; Stensrud, 2007; 

Warner, 2011).  The accuracy and reliability of forecasts from such dynamic systems are governed by three 

sources (Figure 2.3): (1) the uncertainties due to imperfect initial conditions (2) the uncertainties due to 

the model development and (3) limited understanding of the chaotic system (Aggarwal, 2013; Diro et al., 

2012; Kirtman et al., 2014; NASEM, 2016; Slingo & Palmer, 2011). In addition, the sparse distribution of 

observing stations in some parts of the globe may greatly influence the accuracy of the initial and 
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boundary conditions from GCMs (MacLachlan et al., 2015). Nevertheless, since the 2000s, the seasonal 

and subseasonal prediction system shows great improvement in two approaches: (1) quantifying the 

uncertainty of forecasts, and (2) improving the forecast skill using multimodel ensembles (Kirtman et al., 

2014; Klemm & McPherson, 2017). To deal with, many studies have been conducted (e.g. Booji et al., 

2018; Kusunose and Mahmood, 2016; Palmer et al., 2005; Slingo and Palmer, 2011; Wilks and Vannitsem, 

2018). The errors related to initial and boundary conditions can be considered using ensemble forecasts, 

whereas, the errors arise due to limited understanding of the subject are minimized using the multimodel 

ensembling (MME) approach (Aggarwal, 2013; Kirtman et al, 2014; Simon, 2008). The aim of MME for 

seasonal and sub-seasonal predictions is to customize methods that can manipulate the dataset from the 

multiple outputs of several global coupled ocean-atmospheric models.  

 

Figure 2.3: Schematic representation of the probabilistic uncertainties in weather and climate prediction 

due to the initial condition, and the prediction model (Slingo & Palmer, 2011). 

As per Aggarwal (2013), the idea of MME is that the ensemble forecast of individual models is taken first 

to minimize the errors due to imperfect initializations. The ensemble of the ensemble forecasts from 

single models is therefore followed to consider the errors due to limited understanding of the dynamic 

system. Kirtman et al. (2014) have demonstrated the performance of MME forecasts and they have found 

superior skill over the forecasts from single-model. This might be because the errors from individual 

models can be averaged out when they ensemble. This approach is being used by many researchers, 

e.g. (Brown et al., 2010; Diro et al., 2012; Gobena & Gan, 2010), to make probabilistic seasonal forecasts 

of the dynamic terrestrial-atmosphere-ocean interactions. Moreover, the accuracy and reliability of 

model forests increase if the MME further combined with data assimilation methods (Bourgin et al., 2014; 

Force et al., 2009). For instance, to consider the uncertainties from the initial condition into account, the 

WRF model uses 3d var and 4d var data assimilation techniques (Skamarock et al., 2008)  and the GloSea5 

model uses 3DVar assimilation system and lagged start ensemble techniques (MacLachlan et al., 2015). 

Besides, the uncertainties raised from incorrect observations and representations can also be minimized 

by employing proper verification techniques before they are used as prediction tools (NASEM, 2016; Tang 

et al., 2016). 
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3. Conceptual framework and research objectives  

3.1. Conceptual framework   

Based on the aforementioned research gaps, technologies and approaches, this study attempts to 

investigate the dynamic behaviour of the hydro-meteorology over Northern Ethiopia; and their link to the 

ocean-atmosphere-land surface interactions. The conceptual framework of the study is presented in 

Figure 3.1. The major aim of this research work is to improve the hydro-meteorological forecasts 

(precipitation, runoff and soil moisture) over Northern Ethiopia for the period of 2009-2020/21 at two 

time-scales: (1) sub-seasonal timescale (10-60 days) and (2) seasonal timescale (four months-JJAS). To 

conduct this study, first, understanding the ocean-atmospheric phenomenon and identifying the major 

ocean-atmospheric factors that are strongly correlated with the seasonal and sub-seasonal rainfall 

variation over Northern Ethiopia is essential. This can be achieved by investigating the concept and theory 

of the micro and mesoscale physics in detail (White et al., 2017). Secondly, a coupled NWCP model, i.e., 

the WRF model, will be customized as regional weather and climate model based on the ocean-

atmospheric teleconnections associated with the seasonal and sub-seasonal rainfall over Northern 

Ethiopia. Herein, customization of the WRF model using different rainfall prediction experiments 

(sensitivity analysis) in relation to WRF model parametrization, initial and boundary conditions (ocean and 

atmospheric interactions-results from the first step) will be covered. This could help to reliably and 

accurately predict the weather/climate variables. Finally, the response of the hydrometeorological 

variables to the ocean-atmospheric–terrestrial interaction will be evaluated using the WRF model 

extension i.e., WRF-Hydro. The result/output from this work will be analysed using different statistical 

methods and will have paramount importance for proper management, monitoring and decision making 

in different sectors such as agriculture and water resources of Northern Ethiopia in particular, and Horn 

of Africa in general.  

  

Figure 3.1: The conceptual framework to improve seasonal and subseasonal rainfall and river flow 

prediction. 
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3.2. Objectives  

The main objective of this research work is to improve seasonal and sub-seasonal hydrometeorological 

(rainfall, river flow and soil moisture) predictions with a lead time of 10 days to four months (JJAS rainfall) 

over Northern Ethiopia.  

3.2.1 Research objectives (RO) 

This study will be carried out with three research objectives:  

RO1: Investigate the teleconnections between the major global climate driving factors and seasonal and 

sub-seasonal rainfall variation over Northern Ethiopia  

• Identify ocean-atmospheric variables that link to sub-seasonal and seasonal rainfall in Northern 

Ethiopia 

• Analyse the correlation between the oceanic-atmospheric factors and the JJAS rainfall  

• Develop a framework for possible predictions based on the ocean-atmospheric teleconnections 

RO2: Customize the WRF model as a regional climate model for seasonal and sub-seasonal rainfall 

prediction in Northern Ethiopia  

• Optimize the physical parameters of the WRF model for seasonal and sub-seasonal rainfall 

prediction  

• Perform a sensitivity analysis of SST, zonal wind, terrestrial complexity and forcing initials from 

different GCM products in improving the JJAS rainfalls prediction 

• Evaluate the performance of model forecasts  

RO3: couple the atmospheric to the terrestrial models (WRF-Hydro) for seasonal and sub-seasonal 

hydrological predictions of the Upper Tekeze Basin in Northern Ethiopia 

• Predict the hydrometeorological variables (rainfall, runoff and soil moisture)  

• Evaluate the prediction skill of the coupled WRF-Hydro model under extreme conditions.  
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4. Research design and methods 

4.1. RO1: Investigate the teleconnections between global climate driving factors and 

seasonal and sub-seasonal rainfall variations over Northern Ethiopia  

4.1.1. Introduction  

The Horn of Africa rainy season is classified as a summer maximum rain to the north (JJAS)  and bimodal 

rain season to the south with the boreal spring long season (MAM) and short rainy season October- 

November (Nicholson, 2014). As mentioned earlier, this study is, however, focusing on the northern part 

of Horn of Africa with long season-boreal summer (JJAS rainfall). This seasonal rainfall is largely governed 

by large-scale anomalies of ENSO (Table 4.1). As the climate in Northern Ethiopia is very complicated, for 

summer rainfall prediction, different studies have used different predictors from different regions of the 

Atlantic, Pacific and Indian oceans, and different regional and local atmospheric factors (Table 4.1). 

Besides, the local atmospheric circulations near East Africa, the Indian Ocean and the Atlantic ocean have 

significant roles (Korecha & Barnston, 2007). This indicates that the Ethiopian JJAS rainfall can reliably be 

forecasted by integrating the oceanic variables with that of the atmospheric factors. 

Table 4.1: Summary of global SST regions and Zonal winds that have shown strong correspondence with 

the Northern Ethiopia JJAS rainfall. Where, CEI: Central Equatorial Indian Ocean Index, WIO: Western 

Indian Ocean, EIO: Easter Indian Ocean, Nino 3.4: ENSO average, ML-NWP: mid-latitude northwest Pacific, 

EEAI: Equatorial Easter Atlantic Ocean (Gulf of Guinea) and TAD: Tropical Atlantic Dipole. 

S/n  Oceans  Regions  Area coverage  Reference  

1 Indian 
ocean  

CEI 0° - 15°S and 50°E-80°E  Degefu et al. (2017) 
WIO 10°S-10°N and 50°E-70°E Gissila et al. (2004); Segele & Lamb 

(2005); Segele et al. (2015)  
EIO 10°S–0° and 90°E–110°E Gissila et al. (2004) 
IOD  WIO-EIO Degefu et al (2017); Camberlin (1997) 

2 Pacific 
Ocean  

Niño 3.4 5oN-5oS and 120o-170oW Degefu et al. (2017); Diro et al. (2008, 
2011a; 2011b);Gissila et al. (2004); 
Gleixner et al. (2017); Korecha & 
Barnston (2007); Nicholson ( 2014, 2015); 
Segele & Lamb (2005); Segele et al. 
(2009); Segele et al. (2015); Zaroug et al. 
(2014) 

ML-NWP  30 o-45 oN and 145 o-165 oW Diro et al. (2008, 2011a; 2011b) 
3 Atlantic 

Ocean  
EEAI  5oN-25oN and 15oW-55oW Degefu et al. (2017); Diro et al. (2008, 

2011a; 2011b); Rowell (2013)  
TAD (5oN-25oN and 15oW-55oW) 

- 
(0o–20oS and 10oW–30oW) 

Degefu et al. (2017);  Rowell (2013) 

4 High  
Level wind  

100-300hPa 30E-90 E and 0-15 N  Segele et al. (2015) and Gleixner et al. 
(2017) , Nicholson (2014) and Zeleke et 
al. (2013) 

5 Lower 
level wind  

550hPa, 
850hPa and 
1000 hPa 

30E-90 E and 0-15 N Segele et al. (2015) and Zeleke et al. 
(2013) 
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Therefore, in this study, the teleconnection of the seasonal and subseasonal JJAS rainfall variations with 

the global SST, and Zonal winds at a lower level (850-1000hPa) and upper level (100-300hPa) will be 

investigated. This approach is consistent with Nicholson (2014) and Segele et al. (2015) that the seasonal 

Ethiopian JJAS rainfall is associated with the slowly changing of SST anomalies through changes in regional 

and local atmospheric circulation.  

Though, the MJO anomalies is strongly linked to intraseasonal (sub-seasonal) variations over tropical 

atmosphere (NASEM, 2016; Vitart et al, 2014; White et al., 2017), the MJO signals did not show good 

correspondence with the sub-seasonal JJAS rainfall variation over the Horn of Africa (Camberlin & 

Philippon, 2002; Zaitchik, 2017). This is due to the fact that the MJO signals are strong during the spring 

season. 

 

Figure 4.1. Daily average TEJ propagation (June 01-30, 2018) at geopotential height of 200hPa over the 

Horn of Africa. The study area is located in the red box. Source: Physical Sciences Division, Earth System 

Research Laboratory, NOAA, Boulder, Colorado, at http://www.esrl.noaa.gov/psd/. 

Nevertheless, from the major atmospheric variables, the Northern Ethiopian seasonal and sub-seasonal 

JJAS rainfall variations have good correspondence with the intraseasonal TEJ fluctuations. For this reason, 

in combining with SST teleconnections, the mechanistic link of sub-seasonal JJAS rainfall variations to the 

intraseasonal TEJ variations will be investigated. The TEJ happens during the monsoon season(June-

September) with intraseasonal timescale (30-60 days) variability. The TEJ occurs around 700E and 

propagates horizontally between 5oN and 15oN and 30oE to 90oE (Figure 4.1) and vertically between 70 

hPa and 300 hPa (Sathiyamoorthy et al., 2007). Overall, this research will be aiming at answering the 

questions listed hereunder: 

• What are the global SSTs that can be linked to the seasonal and sub-seasonal JJAS rainfall 

variations? 

• What type the zonal winds are associated with the seasonal and sub-seasonal JJAS rainfall 

variations? 

• Which one or what combination of oceanic-atmospheric variables are most strongly correlated 

with JJAS rainfall variations?  

http://www.esrl.noaa.gov/psd/
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• Can integrated use of these ocean-atmospheric variables improve the rainfall predictions skills at 

seasonal and sub-seasonal timescales? 

4.1.2. Data 

4.1.2.1. Observed rainfall data 

The temporal scope of the study depends on the data availability and, in general, it will initially cover a 

time length of 12 years (2009-2020). This time range is selected considering the station-based observed 

rainfall data in that the time series data available for most of the station is since 2009. The observed daily 

rainfall data for teleconnection, model validation and performance evaluation will be collected from 

meteorological stations, satellite-based, and measured (field survey) data. The observed daily rainfall data 

from 13 meteorological stations in and around the study area (Figure 4.6b) will be collected from Ethiopian 

NMA. The data availability varies from station to station and is not distributed uniformly across the 

catchment (Figure 4.6b).  

To minimize errors due to the sparse distribution of the gauging stations, gridded based rainfall data will 

be used. This can be either from the areal precipitation of the existing rainfall stations using interpolation 

methods or satellite-based observation. The satellite-based observations can be from high spatial and 

temporal resolution station based algorithms such as the CHIRPS dataset from Climate Hazard Group 

database (ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/) and/or from other analysed and 

reanalysed products such as ENACTS from NMA, ECMWF and UK Met office. The CHIRPS observed rainfall 

is at 0.05° spatial resolution and 6-hourly, daily and monthly temporal intervals. In areas with high 

topographic variations like East Africa (Funk et al., 2015), the dataset can reasonably represent the 

station-based rainfall observations (Dinku et al., 2018; Gebrechorkos et al., 2018; Kerandi et al., 2018). 

For simple comparisons, the areal precipitation from the in-situ observations and CHIRPS rainfall are 

presented in Figure 4.2. The graph indicates that the mean monthly averages from both data sources have 

good agreements.  

 

Figure 4.2: Mean monthly and areal mean monthly rainfall of the study area (2009-2018) from 10 stations 

as indicated in Figure 4.6b. and areal mean monthly rainfall from CHIRPS observations. 
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The advantage of the use of analysis or reanalysis data for model verification in situations where the 

conventional in-situ data are sparse has been illustrated by Warner (2011). However, such analysed and 

reanalysed daily rainfall data may require verifications from station-based observations as they are based 

on the coarser resolutions. In this study, for better use of in-situ rainfall observation, satellite-based 

observations will be compared with that of the station-based observations and will be corrected if 

necessary. Such reliable and accurate observed data is crucial because the accuracy of the model 

simulations will be measured relative to these observations.  

4.1.2.2. Global SST and Zonal wind  

For this study, mean monthly (MAM) global SSTs covering the time length of 2009 to present will be 

retrieved from IRI data Library: NOAA/Reyn_SmithOIv2/ database (NOAA OI.v2 SST) and at the website: 

http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/.EMC/.CMB/.GLOBAL/.Reyn_SmithOIv2/.monthl

y/.sst/. The NOAA OI.v2 SST monthly fields are constructed based on linear interpolation of the weekly 

optimum interpolation (OI) version 2 fields to daily fields then averaging the daily values over a month 

(Reynolds et al., 2002). It is mainly based on in-situ sea surface observations (using ships and buoys) and 

satellite observations from Advanced High-Resolution Radiometer (AVHRR). The global SST data that 

covers 180W to180E longitude and 60oN-60oS latitude with 1o x1o horizontal resolutions centred at 0.5o 

will be obtained. For the specific climate indices (Table 4.1) mean monthly SST will be retrieved from 

NOAA-PSD: Climate Indices/Monthly Atmospheric and Ocean Time Series (website: 

https://www.esrl.noaa.gov/psd/data/climateindices/list/). Mean monthly (May-September) zonal wind 

levels from geographical location 30oE-70oE and 0-20oN (for lower-level wind  at geopotential of 550, 850 

and 1000hPa, and for upper-level winds at geopotential height of 100, 200, and 300hPa) will also be 

retrieved from NCEP-DOE Reanalysis 2 data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, 

USA, at Website: https://www.esrl.noaa.gov/psd/). 

4.1.3. Selection of ocean-atmospheric teleconnections  

Possible ocean-atmospheric variables that link to the Ethiopian JJAS rainfall will be selected based on two 

steps. First, detail investigation on a large set of teleconnection candidates such as SSTs from different 

regions of the Pacific, Atlantic, and Indian ocean and Zonal wind at five pressure levels (100hPa, 200hPa, 

300hPa, 550hPa, 850hPa and 1000Pha) will be conducted. For better understand, three sets of composites 

based on the precipitation characteristics (i.e., for the dry, normal and wet conditions) will be used. Then, 

a correlation map between JJAS Northern Ethiopia rainfall and the global SST at every grid point with lag 

time 1-3 months (MAM) and with the Zonal winds with lead time of five months (one month in advance 

from previous season i.e., May and four months in contemporaneous season (June-September) will be 

constructed. 

From these maps, based on correlation coefficients and visual inspection, areas that show a strong 

correlation will be selected as potential teleconnection candidates. For instance, a correlation map (Figure 

4.3) between Northern Ethiopia July rainfall and monthly average global SST of May (2009-2017) shows 

that the July rainfall over Northern Ethiopia is negatively correlated with Equatorial Eastern Atlantic Ocean 

(blue box) and positively correlated with Northwest Indian ocean (green box). 

https://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/.EMC/.CMB/.GLOBAL/.Reyn_SmithOIv2/?Set-Language=en
http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/.EMC/.CMB/.GLOBAL/.Reyn_SmithOIv2/.monthly/.sst/
http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/.EMC/.CMB/.GLOBAL/.Reyn_SmithOIv2/.monthly/.sst/
https://www.esrl.noaa.gov/psd/data/climateindices/list/
https://www.esrl.noaa.gov/psd/
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Figure 4.3: Correlation map between July rainfall over Northern Ethiopia (38.9o-39.7o N and 12.6o-13.3oE) 

and mean monthly global SST of May. The blue (Equatorial Eastern Atlantic Ocean) and green box 

(Northwest Indian ocean) represent oceanic regions that indicate negative and positive correlations, 

respectively. 

In a wide range of correlation maps, especially in global SST regions, a number of candidates can be 

expected. To minimize these candidates, Sea surface regions which are very close to the climate indices 

regions (Table 4.1) that show a strong correlation at significance level 0.05 will be selected. Then a 

sensitivity test of the regression to each predictor will be employed (Nicholson, 2014). From the sensitivity 

analysis, predictors that are highly sensitive will be selected as key variables. Once the predictor 

candidates are properly identified, empirically linear relationships will be developed (Appendix: section 

8.1.2). This is in agreement with Chen & Georgakakos (2015) that If the oceanic-atmospheric variables are 

accurately investigated, establishing an empirical predictor–predictand relationship is a simple and robust 

tool for statistical predictions.  

During the selection of an appropriate teleconnection candidate, collinearity and overfitting might happen 

due to the dependency between candidate predictors (Diro et al., 2008; Nicholson, 2014). To avoid 

multicollinearity and overfitting, each potential candidate will be regressed against the other predictors. 

From these regressions tests, the best predictors will be selected based on the Variance Inflation Factor 

(VIF) which is given by Equ. 4.1 (Diro et al., 2008). 

𝑉𝐼𝐹 =
1

1 − 𝑅𝑖
2 … … … … … … … (𝐸𝑞𝑢. 4.1) 

Where 𝑅𝑖
2 is the regression coefficient of the ith candidate. A candidate that shows more than 10 % of VIF, 

can be lower to 4% (Chen & Georgakakos, 2015), will be eliminated from the final selections.  
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4.1.4. Sensitivity and accuracy assessment  

The sensitivity of the ocean-atmospheric variables and accuracy of the regression model will be assessed 

using statistical methods (Appendix 8.1) such as correlation coefficient, Bias (Mean Error), Root Mean 

Square Error (RMSE), Mean Absolute Error (MAE) and skill score (SS). The use of these techniques is 

consistent with recent studies (Abdelwares et al., 2017; Kerandi et al., 2017; Pohl et al., 2011) and 

recommendations (Warner, 2011). 

Last but not least, the overall methodological framework for RO1 is summarized in Figure 4.4 hereunder. 

 

Figure 4.4: Schematic workflow to identify oceanic atmospheric factors that link with the JJAA rainfall 
variations and develop empirical relationships. Where, NMA: National Meteorological Agency, SST: Sea 
Surface Temperature, and DEM:  Digital Elevation Model at high resolution (30 meters or higher)  
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4.2. RO2: Customize the WRF model as a regional climate model for seasonal and sub-

seasonal rainfall prediction over Northern Ethiopia   

4.2.1 Model selection  

Reliable and accurate rainfall prediction can be carried out by understanding the interaction between the 

ocean-atmosphere and thus with the land surfaces (White et al., 2017). The use of joint ocean-

atmospheric variables that show a strong statistical link in reproducing the weather and climate 

components requires the employing of numerical models. The choice of the NWP model depends on the 

demands for appreciating the regional and local variations (Warner, 2011). In line with, in Ethiopian, the 

summer rainfall is strongly linked to both remotely oceanic parameters (SST) and regional and local 

atmospheric circulations. This implies that the use of NWP models that can couple the ocean with the 

regional and local atmosphere variables for reliable rainfall predictions is essential. Globally, there are 

weather/climate prediction models that are effective in simulating weather and climate variables at 

various timescales and spatial resolutions. For instance, the GFS (GFS, 2018), ECMWF (Olaniyan et al., 

2018; Stockdale et al., 2018) and the CFSV2 (Saha et al., 2014; Siegmund et al., 2015; Tian et al., 2017) 

models are among the widely used GCMs for seasonal and subseasonal rainfall prediction. As these 

forecasts are at global scale, dynamically downscaling into regional and local scales using RCMs is however 

becoming a common practice (Simon, 2008; Tang et al., 2016; Vecchi et al., 2011). This method of 

downscaling may provide full sets of the microphysics at higher resolutions to regional numerical models 

(Tang et al., 2016) so that weather and climates can be reliably forecasted at finer scales.   

Thus, for this study, the next generation mesoscale WRF model is chosen as a regional climate model for 

dynamically downscaling the seasonal and subseasonal forecast from global prediction models. The model  

is selected due to (1) its ability to address smaller atmospheric scales (regional and synoptic scales), (2) it 

is dynamically coupling the ocean-atmosphere-land surfaces (3) it capacitates the research to operation 

developments (e.g. Ethiopian NMA uses the WRF model for 72 hours of operational forecasts), (4) it 

provides extension facilities such as WRF-Hydro to investigate the atmosphere-terrestrial relationships; 

and (5) Moreover, due to its high-level numerical accuracy and scalable regional modelling properties 

(Powers et al., 2017; Skamarock et al., 2008). The use of WRF model as RCM is  consistent  with recent 

studies in several regions of the world, for example, in East and West Africa (Argent et al., 2015; Kerandi 

et al., 2018; Naabil et al., 2017; Siegmund et al., 2015; Yao et al., 2017). 

However, in areas with a complex topography and climate system, like Northern Ethiopia (Nicholson, 

2014), forcing the WRF model for reliable and accurate prediction requires accurate representations of 

the oceanic-atmospheric-land surface variables (Flaounas et al., 2012; Jee & Kim, 2017; Jung et al., 2012; 

Senatore et al., 2014; Song et al., 2009). This is due to the fact that RCMs are weak to represent the reality 

due to insufficient resolution of inputs provided to the models (Carvalho et al., 2012; Ntwali et al., 2016). 

More noticeably, the Ethiopian JJAS rainfall distribution, both spatially and temporally, is largely 

influenced by the complex orography (Enyew & Steeneveld, 2014; Korecha & Barnston, 2007). In the WRF 

model, the sensitivity of the model to the major initial and boundary conditions such as meteorological 

inputs and topographic features in reproducing JJAS rainfall over Northern Ethiopia can be assessed 

through three approaches: (1) considering sufficient horizontal resolution, (2) choosing appropriate 

vertical coordination system and (3) enhancing the model inputs/improving the representations of the 

model inputs.  
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4.2.2. The WRF model 

For this research work, the Advanced Research WRF model (WRF-ARW) Version 4 (Skamarock et al., 2008) 

will be used. The WRF-ARWS Version 4 is a non-hydrostatic, mesoscale NWP and atmospheric simulation 

system. It is a community-based model that has been released since June 2018 by the National Centre for 

Atmospheric Research (NCAR). The model is designed with a flexible code to be utilized for several 

purposes of research and operational predictions (Powers et al., 2017). Despite its demand for a high 

computing machine, it’s portable and efficient on available parallel computing platforms. The model is 

capable to provide a wide range of earth system prediction applications across different spatial and 

temporal scales (Skamarock et al., 2008). It offers a quite large number of different physical schemes that 

can be combined in any way and optimized to any region of interest. Details about these physical 

parametrizations and their characteristics are found in the WRF model description document (Skamarock 

et al., 2008). The overall schematic workflow of the WRF model for this project is presented in Figure 4.5. 

The WRF model architecture consists of three sub-process (Skamarock et al., 2008): (1) WRF Preprocessing 

System (WPS-defining model domains), (2) WRF-ARW core processing and  (3) WRF Post-processing 

System (WFP- analysis and visualizing of the WRF model outputs). 

 

Figure 4.5: Schematic methodological flowchart of the WRF-ARW modelling System for numerical rainfall 

predictions. Where, WPS: WRF pre-processing system, WFP; WRF post-processing, NCL: NCAR Command 

Language, Rwrf: R package for WRF post-processing and GoF: Goodness-of-Fit test  
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4.2.3. Model Configuration  

This study will be conducted in the upper Tekeze river basin, specifically in Zamra catchment, Northern 

Ethiopia. The study site is found in a region between 12.620-13.300N and 38.920-39.620E and covers an 

area of around 3500 km2 (Figure 4.6b). The catchment consists of four sub-basins and is situated in the 

highlands of Northern Ethiopia and altitude varies from 1134- 3948 m.a.s.l. It is the main tributary of the 

upper Tekeze basin and particularly to Tekeze Dam. The annual rainfall (2009-2018) of the study area 

varies spatially (Figure 4.2) and ranges from around 420 mm in the lowlands to around 900 mm on the 

highlands. The mean monthly temperature also varies from 13oc to 28oc. The study area is selected based 

on data availability, access for research, active water resources infrastructures, vulnerability to drought 

and interest of the EENSAT project. 

The domain configurations for the WRF model for nesting from the outer domains to inner domains is 

shown in Figure 4.6a. The procedures for WRF domain size configurations vary from researcher to 

researcher and, in general, there is no rule of thumb (Jee & Kim, 2017). However, most researchers 

including that of the model description (Skamarock et al., 2008) suggested a 1:3 domain ratio between 

the outer to the inner domains. For this study, three two-way nest domains with a ratio of 1:3 centred at 

13 Northing and 39.4 Easting using Mercator map projection (Figure 4.6a) are established.  

 

Figure 4.6:  Horn of Africa map that shows the model configuration domains (a): the red box represents 

the parent domain (d01), while the nesting domain with green box and the blue boxes show the inner 

domains d02 and d03, respectively and (b) study area map with topography (the DEM) and rain gauge 

distribution across domain_d03. 

The parent domain (d01), domain (d02) and inner domain (d03) are defined with a horizontal resolution 

of 27 km, 9 km and 3 km, and 41X41, 40X40 and 31X31 grid points east-west and north-south directions, 

respectively. The higher horizontal resolution of the outer domain is chosen in agreement with the 

horizontal resolution of the selected GCM products. In addition, it has been reported  (Jee & Kim, 2017; 

Kerandi et al., 2017) that the skill of the WRF model predictions increases with increase outer domain 



25 
 

horizontal resolution. The ratio of 1:3 helps to nest the initial and boundary conditions from the coarser 

parent domain smoothly to the inner domains. This smoother transition is an essential procedure to 

prevent the propagation of uncertainties and numerical instabilities from the border into the centre of 

the domain (Jee & Kim, 2017).  In addition, to avoid the uncertainties during driving initial and boundary 

conditions from GCM analysis and/or reanalysis outputs, a grid-based nudging technique will be applied 

(Pérez et al., 2014). The nudging techniques adjust the difference between a pair of states (observed and 

forecasted). In this case, only the parent domain is nudged to let the inner domains create their own 

structure at finer resolutions. The outputs from the three domains will be compared to each other and 

with that of the observed rainfalls.  

Verifying vertical resolution as a key parameter in given domain sizes has a significant contribution to the 

prediction skill of the WRF model (Pohl et al., 2011). The vertical resolutions refer to the number of vertical 

levels that can vertically be interpolated to the model domains. Warner (2011) emphasized that the choice 

of vertical resolution directly associated with the size of the domain configurations. For this study, two 

vertical resolution: (1) the WRF model default values i.e., 28 vertical layers with 5000 Pa top atmospheric 

pressure, and (2), as per the recommendations of Skamarock et al. (2008), for a 27-km horizontal 

resolution, 51 vertical layers with the top atmospheric pressure of 1000 Pa will be adapted.  

4.2.4. Data  

For this research, daily time series of in-situ rainfall observations (from section 4.1.2.1.), initial and 

boundary conditions, forcing initials such as SST and Zonal winds (from section 4.1) will be collected for 

the time range of 2015-2020. Such a short period of data is required because, for a large group of 

experiments, it demands high computing resources. The year 2015 is selected considering the fact that 

this has been a drought-affected year over Northern Ethiopia (Funk et al., 2016).  

4.2.4.1 Forcing initials: initial and boundary conditions   

For this study, forcing initials and boundary conditions: the highest resolution (30s) geographic data form 

WRF Users Page (Website: http://www2.mmm.ucar.edu/wrf/users/) and the ECMWF-ERA5 reanalysis 

meteorological inputs from ECMWF climate data store (website: https://cds.climate.copernicus.eu/) will 

be retrieved. The ECMWF-ERA5 data is at 31 km spatial resolution and 6-hourly temporal intervals. The 

dataset is produced using 62 km horizontal resolution 10-member 4DVar data assimilation product with 

137 hybrid sigma-pressure levels, up to 0.01 hPa (ECMWF, 2017). The database is among the widely 

exploited databases in the world and particularly in East Africa (Abdelwares et al., 2017; Argent et al., 

2015; Diro et al., 2012; Kerandi et al., 2018; Kerandi et al., 2017; Pohl et al., 2011; Srivastava et al., 2015; 

Yao et al., 2017). Hence, the use of ECWMF-ERA5 reanalysis as forcing initial and boundary condition in 

this study is consistent with the studies over East Africa.  

4.2.5. Research design and experiments  

This study proposes three major research designs consisting of different specific experiments in order to 

properly customize a framework of the WRF model configurations for Northern Ethiopia JJAS rainfall 

predictions. These are: (1) optimization of physical options, (2) optimization of forcing initials and lateral 

boundary conditions and (3) sensitivity analysis of SST, Zonal winds and terrestrial complexity. These 

experiments are mainly to answer the following questions:  

http://www2.mmm.ucar.edu/wrf/users/
https://cds.climate.copernicus.eu/
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I. Can customizing the WRF model as a regional climate model improve the seasonal and 

subseasonal rainfall predictions over Northern Ethiopia?  

II. Can the optimization of forcing initials from different global weather and climate prediction 

datasets improve the prediction skill of the WRF model over Northern Ethiopia?  

III. If the regionalized WRF model is forced by global and regional climate driving factors that link to 

the Northern Ethiopia JJAS rainfall, will its prediction skill be improved? 

IV. Can enhance the terrain representations of the WRF model improves the simulation skill of the 

model under complex topography, like Northern Ethiopia?  

V. What are the sensitive/optimal parameters of the WRF model for seasonal and sub-seasonal JJAS 

rainfall predictions?  

4.2.5.1 Customization physical options 

The WRF model contains a quite large number of parameters. To identify optimal physical parameters 

that enable reasonable seasonal and sub-seasonal rainfall forecasts, customization of the WRF model in 

a comprehensive approach is crucial (Argent et al., 2015). In this study,  the optimization will be focused 

mainly on the major physical option: (1) Cumulus conservation (CU), (2) Microphysics (MP), (3) Planetary 

Boundary Layer (PBL), (4) Long-wave radiation (LW), (5) shortwave radiation (SW) that potentially affect 

the rainfall characteristics (Abdelwares et al., 2017; Argent et al., 2015; Pohl et al., 2011; Siegmund et al., 

2015). Detail descriptions of these parametrizations are available in the WRF model version 4 document 

(Skamarock et al., 2008). The model is flexible with different options depending on the demand for the 

domain configuration. Nevertheless, parameterization of the physical options of the WRF model into local 

scales is among the challenging task of the RCM (Abdelwares et al., 2017). In East Africa, there were some 

efforts to customize the WRF model as a regional climate simulation model (Abdelwares et al., 2017; Pohl 

et al., 2011). Despite the complex climate system and terrain characteristics (Diro et al., 2012; Nicholson, 

2014), they have concluded that the WRF model can be potentially useful as RCM over East Africa. 

Nevertheless, these generalizations are based on (1) large domains, and (2) most of the studies were 

focused on the spring season (March to May rainfall). For example, the WRF model customizes study for 

seasonal climate simulation (Argent et al., 2015) over the Lake Victoria basin have confirmed that the local 

findings did not agree with the regional recommendations. Even the recent result from customization of 

the WRF model over the northeast part of East Africa (Abdelwares et al., 2017) varies from that of Pohl et 

al. (2011). This indicates that customization of the WRF model parametrization into more local conditions 

are required. 

Therefore, this research work is set-out to customize optimal combinations of the WRF model 

parametrizations that can enable to regenerate JJAS rainfall over the Horn of Africa. For this experiment, 

three parameter schemes from each physical option (Table 4.2) are selected. The selection was carried 

out based on previous sensitivity studies for arid and semiarid regions, particularly for West and East 

Africa (Abdelwares et al., 2017; Argent et al., 2015; Noble et al., 2017; Otieno, Mutemi, Opijah, Ogallo, & 

Omondi, 2018; Pohl et al., 2011; Ramarohetra et al., 2015; Yao et al., 2017)  and  the description of the 

schemes related to the specific location of the domains. In addition, the WRF Model contains two sources 

of land use classifications: the U.S. Geological Survey (USGS) based on 24 classes and the Moderate 

Resolution Imaging Spectroradiometer (MODIS) with 20 land use classes (Skamarock et al., 2008). It has 

been suggested that for East African (Kerandi et al. 2017),  for West Africa (Ramarohetra et al., 2015) and 

particularly for Ethiopian rainfall (Abdelwares et al., 2017; Pohl et al., 2011), the WRF configuration with 
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MODIS land use classification has shown superior simulation skill over that of the USGS. The MODIS model 

is also the default land use model of the WRF model. Herein, the MODIS land use with Noah land surface 

modelling will be used in agreement with these recent findings. The experimental designs to customize 

optimal WRF model physical parametrizations for Horn of Africa climate system is presented in Table 4.3 

(Exp.1-Exp 5).  

Table 4.2. summary of selected physical options, parameter schemes, and their Model_ID. Adapted from 

Skamarock et al., (2008) 

Physics 
options  

Model 
_ID 

Scheme Reference 

 CU 
 
  

1 Kain-Fritsch (KF) Kain (2004) 
2  Betts Miller Janjic (BMJ) Janjic, 1994, 2000 

3  Grell-Freitas (GF) Grell et al. (2013) 

 MP 
 
  

2 Lin et al. scheme (Lin) Lin et al. (1983) 

6  WRF Single-Moment 6-Class scheme (WSM6) Hong and Lim (2006) 

10 Morrison double -moment scheme (Morrison)  Morrison et al. (2009) 
 PBL 
 
  

1 Yonsei University (YSU) Hong et al. (2006) 
2 Mellor-Yamada-Janjic (MYJ) Janice (1994) 
7 Asymmetrical Convective Model version 2 (ACM2) Pleim (2007) 

 LW 
 
  

1 Rapid Radiative Transfer Model (RRTM) Mlawer et al. (1997) 
14 Improved RRTM for global climate applications (RRTMG-K) Baek (2017) 

3 NCAR Community Atmosphere Model (CAM) Collins et al. (2004) 
 SW 
 
  

1 Dudhia Dudhia (1989) 
2  New Goddard (Goddard) Chou and Suarez (1994) 

3 CAM Collins et al. (2004) 

4.2.5.2 Model initializations  

The choice of an appropriate forcing GCM products has a strong impact on the regional and local simulated 

climate variables (Abdelwares et al., 2017), especially in areas with high terrain complexities (GFS, 2018). 

Hence, evaluating the WRF model performance in relating to the initial and lateral boundary conditions 

that dynamically downscaling from relevant but different GCM databases is crucial (Pohl et al., 2011; Yao 

et al., 2017). Herein, the performance of the WRF model to reproduce the observed rainfall using initial 

and boundary condition from the GFS-FNL and CFSv2 6-hourly forecasts will be assessed. The GFS-FNL and 

CFSv2 6-hourly forecast will be retrieved from the NCAR Research Data archive (Website: 

http://www2.mmm.ucar.edu/wrf/users/download/). The GFS-FNL data is an operational global analysis 

and forecast data at 0.25o horizontal resolution, available every six hours and updated daily. The GFS-FNL 

6-hourly forecast is a product of the GFS model using continuously collected observational data from the 

Global Telecommunications System (GTS) with the global data assimilation system (NCEP, 2015). The 

CFSv2 dataset is also 6-hourly forecasts of the pressure and surface/nearly surface atmospheric data at 

0.2o horizontal resolutions(Saha et al., 2011).    

Table 4.3: Available GRIB Datasets from NCAR for WRF Model. Adapted from(NCAR, 2018).   

s/n Dataset Spatial Resolution Temporal Resolution Temporal Availability 

1 GFS-FNL 0.250 6-hr 2015-07-08 to current 

2 CFSv2 0.2 0 6-hr 2015-01-01 to current 

http://rda.ucar.edu/datasets/ds083.3/
http://rda.ucar.edu/datasets/ds094.0/
http://www2.mmm.ucar.edu/wrf/users/download/
http://rda.ucar.edu/datasets/ds083.3/
http://rda.ucar.edu/datasets/ds094.0/
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These GCM products are chosen because (1) they produce global weather/climate forecasts at high spatial 

(less than 0.25o) and temporal resolutions (less than or equal to 6-hours interval); (2) they are capable in 

providing initial and boundary conditions at seasonal and sub-seasonal timescales (Olaniyan et al., 2018; 

Tian et al., 2017; Frederic Vitart et al., 2012); (3) good in reproducing regional climate system in Africa and 

particularly East Africa (Gleixner et al., 2017); (4) their datasets is in GRIB2 format for which their forecasts, 

analysis and reanalysis data can be directly utilized by the WRF model (NCAR, 2018); and (5) in agreement 

with previous studies (Abdelwares et al., 2017; Diro et al., 2012; Gleixner et al., 2017; Pohl et al., 2011) 

for comparisons of the research outputs. 

4.2.5.3 Sensitivity of SST, zonal winds and terrain complexity  

Experiment 1: improve horizontal resolution and vertical coordinate system 

Recent studies (Carvalho et al., 2012; Enyew  & Steeneveld, 2014; Ntwali et al., 2016) have suggested that 

improving horizontal and vertical resolutions;  smoothing the elevation gap between model and the reality 

and coupling with the best surface level, PBL and LSM schemes can improve the simulation skill of the 

WRF model. Herein, one additional domain configurations (Figure 4.7a) that represents two-way nesting 

between parent domain (d01) with 27-km horizontal resolution that covers sufficient area which includes 

the seas surfaces such as the western Indian Ocean and the Red Sea, and three  inner domain (d02) with 

9-km horizontal resolution for regional simulation (Horn of Africa), domain_d03 with 3-km horizontal 

resolution for Northern Ethiopia simulations and domain_do4 with 1-km for the upper Tekeze basin 

predictions will be established. In case of the vertical coordination system,  the model will be forced with 

two options:  (1) with terrain-following coordinate system and (2) Hybrid vertical coordinate system ( i.e., 

the details: Skamarock et al., 2008). With these experiments, representativeness of SST, Zonal winds and 

terrain complexity and thus the prediction skill of the model will be assessed. 

Experiment 2: improve the representations of the major ocean-atmospheric inputs  

The oceanic variables such as the SST anomalies are an important variable to better understand 

interactions between the ocean and the atmospheric circulations (Reynolds & Chelton, 2010; Song et al., 

2009). Song et al. (2009) have emphasized that the characteristics of atmospheric circulation such as wind 

speed, direction, wind curl, and others are linearly associated with SST characteristics. This has been 

confirmed by Jee & Kim (2017) and  Song et al. (2009) in that the sources of SSTs and their resolution have 

a significant impact on the simulation of the atmospheric variables. In this study, to improve the model 

SST representations, enhanced SST fields will be ingested to the WRF environment. This enhancement will 

be independent of the forcing initials from the GCM products. Herein, a daily time series of SST from the 

WRF model will be compared with daily SST from sources with high spatial resolutions such as NOAA 

Optimum Interpolation SST (OISST) version2 (website: https://www.ncdc.noaa.gov/oisst). The 

comparison will be done by employing GIS-based external pre-processing tools using resampling with the 

nearest neighbour techniques (Senatore et al., 2014). Next, the new SST grids will be masked with the 

model defined SST grid points and ingested to the WRF lower boundary condition files. In addition, a 

sensitivity of the SST in reproducing JJAS rainfall by shifting the lag time and changing the SST by the values 

+/- equivalent to SST anomalies from the best teleconnections (RO1) will be assessed. Using similar steps, 

the sensitivity of the zonal winds (U-wind) will be examined. Then the ordinary steps of the WRF model 

processes will be followed and its degree of improvement will be assessed. 

https://www.ncdc.noaa.gov/oisst


29 
 

Experiment 3: improve the static geographic inputs  

Using the same method, as described for the SST enhancement above, ancillary data such as the land 

cover, topography and soil type properties of the WRF model will be evaluated in relation to the real 

terrain characteristics of the domains. Then they will be improved to the level that can represent the 

reality of the model domains. For example, the current highest resolution of the WRF model (30-second) 

geographical inputs represent a topography (Figure 4.7c) with significant elevation deviations. The 

difference ranges from +77.27m up to -581m at the lower elevation and the mountainous terrain, 

respectively. This indicates that improving the representation of the topography may play a significant 

role in the accuracy of numerical hydrometeorological simulations (Carvalho et al., 2012; Flaounas et al., 

2012).  

 

Figure 4.7: WRF domain configurations for sensitivity analysis of horizontal resolution (improved up to 

1km resolution- domain_04 and large area coverages (domain_d01) (a) and a comparison of topographic 

representations from Digital Elevation Model (DEM) at 30-meter horizontal resolution (b) with the WRF 

Model at 30-second horizontal resolution (c).  

4.2.6. Model runs 

A series of simulations will be executed for the time length of four months: June- September 2015-2019. 

This simulation period is selected considering the demand for computing resources and time. The 

simulation will be initialized on April 01 and integrates on September 30, including 2 months (April and 

May) spin-up period to let the model adjust to initial conditions. Due to a large number of parameter 

combinations, the customization of the physical options will be conducted based on step-wise evaluations 
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( Pohl et al., 2011; Yucel et al., 2015). This implies when a single scheme is tested all other settings will be 

retained at a model control. The model control refers to the model default values and recommended 

model parameters from previous studies such as the KF for the CU (Otieno et al., 2018; Pohl et al., 2011); 

CAM for the LW and SW radiations and the MYJ for the PBL (Abdelwares et al., 2017);  the WSM6 for MP 

and the MODIS-Noah for the LSM  (Abdelwares et al., 2017; Kerandi et al., 2017; Pohl et al., 2011). A total 

of 28 WRF configurations for four/five years (considering the year of 2015 for the drought year, 2016 and 

2017 for normal years and 2018 for a wet year) will be performed (see Table 4.3). 

4.2.7. Method of analyses and performance evaluation 

The model output from each run will be analysed and visualized using  WRF post-processing tools such as 

NCL (NCL, 2018) and the R-packages. The model simulated rainfalls will be analysed at two temporal 

scales. For the sub-seasonal forecasts, the daily simulations that range from 10 to 60 days or weakly 

averages will be considered. Whereas for the seasonal prediction, a monthly and seasonal averages of 

simulated JJAS rainfall will be analysed. For continues variables like seasonal and sub-seasonal rainfall 

forecasts (Warner, 2011), the performance of the WRF model configurations will be assessed using three 

statistical metrics: (1) the accuracy indices (Appendix: section 8.1.3), (2) skill score (Appendix: section 

8.1.4) and (3) correlation coefficients (section 8.1.1). The assessment will be carried out by comparing the 

model simulations with that of in-situ (satellite based) rainfall observations. In addition, the Taylor 

diagrams (Taylor, 2001) will be employed to visualize the strength and weakens of different WRF 

configurations in reproducing the observed rainfalls. These statistical methods are consistent with related 

studies(Abdelwares et al., 2017; Andrys, Lyons, & Kala, 2015; Hoedjes et al., 2014; Iguchi et al., 2017; Li, 

Li, & Jin, 2014; Noble et al., 2017). 
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Table 4.3: Summary of the WRF model configurations and experimental designs. Where, Exp. represents 

each experiment and the number in the brackets E.g., (3) indicates the number of runs per experiment 

Experiment  Physical parametrization 
  

Land 
use   

Forcing 
 GCM 

Vertical 
layer (VL) 

Domain 
size 
(Km) 

Physical 
options 

Selected 
schemes 

Controlled schemes  

Exp. 1 
(2) 

CU • BMJ 

• GFl 

PBL: MYJ 
MP: WSM6 
LW: CAM 
SW: CAM  
LSM: Noah   

MODIS    
  
  
 
 
 
 
 
 
 
 
 
 
 
 
ECMWF-
ERA5 
  
  
  
  
  
  
  
  
  
  

  
  
  
  
 
 
 
 
 
 
 
 
 
 
 
28 & HVC 
 
  
  
  
  
  
  
  
  
  
  
  
  

              
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d01:27  
d02:9 
do3:3   


Exp. 2 
(3) 

 
MP 

• Lin        

• Morrison

CU: Exp. 1 
PBL: MYJ 
LW: CAM  
SW: CAM 
LSM: Noah  
  
  

 
MODIS  

Exp. 3 
(3) 

PBL • YSU 

• ACM2  

CU: Exp. 1 
MP: Exp. 2 
LW: CAM  
SW: CAM 
LSM: Noah   

 
MODIS 

Exp. 4 
(3) 

LW • RRTM 

• RRTMG_K 

•  

CU: Exp. 1 
MP: Exp. 2 
PBL: Exp.3  
SW: CAM 
LSM: Noah   

 
MODIS 

Exp. 5 
(3) 

SW • Dudhia 

• Goddard  

CU: Exp. 1 
MP: Exp. 2 
PBL: Exp.3  
LW: Exp. 4  
LSM: Noah  
  
  

 
MODIS 

Exp. 6 
(2) 

 
 CU: EXP. 1 

MP: Exp. 2 
PBL: EXP. 3  
LW: Exp. 4 
SW: Exp. 5 
LSM: Noah  

 
 
MODIS 

 
GFS-FNL 
CFsv2   

Exp. 7  
(2) 

 
 CU: Exp. 1 

MP: Exp. 2 
PBL: Exp. 3  
LW: Exp. 4 
SW: Exp. 5 
LSM: Noah  

 
 
MODIS 

  
  
 Exp:6 

  
 
50 and 
TFC  

Exp.8 
(3) 
 

  horizontal 
resolutions  

Exp.7 d01:27  
d02:9 
do3:3 
d04:1   

Exp .9 
(3) 
 

  SST (Pacific, Atlantic, 
Indian) 

Exp. 10 
(2) 

  Zonal wind (UW, LW) 

Exp 11 
(1) 

  Orographic impact  
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4.3. RO3: Couple the atmospheric to a terrestrial model using WRF-Hydro for seasonal and 

sub-seasonal streamflow predictions of the Upper Tekeze river basin in Northern 

Ethiopia 

In arid and semiarid environments with highly variable climate systems like Northern Ethiopia, 

understanding the hydrometeorological variables ahead of time requires a detailed investigation of the 

ocean-atmospheric-land surface interactions. The issue of ocean-atmospheric interaction can be dealt 

with applying regional climate models such as the WRF model (Kerandi et al., 2017). However, 

investigations related to ocean-atmospheric-terrestrial interactions in a specific area of interest require 

long-term in-situ observation of the water balance components (such as rainfall, runoff and soil moisture). 

Nevertheless, in areas with data scarcity, the ocean-atmosphere-terrestrial interaction can be studied by 

using the RCMs in combination with hydrological models (Kerandi et al., 2018). The use of joint 

atmospheric-hydrological models such as WRF-Hydro enhances the level of understanding of the 

atmospheric-terrestrial process by nesting global scale information to the regional and local scales 

through the regional atmospheric models (Gochis et al., 2018). The nesting can be either one-way or two-

way coupling. The one-way nesting is the simplest one which provides information only from the 

atmospheric model to the hydrological processes, while the two-way nesting includes the vice versa. This 

implies, in two-way nesting, the outputs of the RCM models could be an input for the hydrological models 

and the output from the hydrological model can also be used to update the atmospheric models based 

on the feedback from the terrestrial models (Zabel & Mauser, 2013). Due to this fact, to improve the 

prediction skills of hydrometeorological models, the two-way coupling is generally superior over that of 

the one-way nesting (Kerandi et al., 2018). In areas where the soil moisture distribution is highly governed 

by the topography and its spatial and temporal correlation with the surface and lower atmosphere 

variables varies instantaneously, the coupled atmospheric-terrestrial model enables capable modelling 

system (Kerandi et al., 2018).   

In Ethiopia,  though there are emerging water resources developments (Berhanu et al., 2014), studies that 

combine the RCM with that of hydrological modelling for skilful hydrometeorological prediction few days 

to few months in advance are scarce. Therefore, this study is aiming at optimization of the WRF-Hydro 

model for hydrometeorological (mainly the Rainfall, Runoff and soil moisture) simulations at seasonal and 

sub-seasonal timescales. More specifically, this study will answer the following questions: 

1. Can the WRF-hydro model reliably and accurately simulate the major hydrological components 

during the main rainy season (JJAS)? 

2. Can the coupled WRF-Hydro model properly capture the extreme events of the 

hydrometeorological variables? 

3. What are the sensitive WRF-Hydro parameters in simulating hydrometeorological variables in the 

Upper Tekeze basin?  

4.3.1. Data  

In-situ (satellite-based) observations such as daily rainfall observations (4.1.2.1), daily runoff observations 

and daily soil moisture observations and model forcing parameters such as the meteorological inputs and 

static geographic data for the time range of 2015-2020 will be used.  
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4.3.1.1. Discharge data 

Daily runoff data for the period of 2015-2020 will be collected from the Ethiopian Ministry of Water 

Resources, Electricity and Irrigations (MWEI). These data are required for model calibration and 

verifications. The catchment has only one gauging station and is situated at the outlet. However, as the 

catchment size is more than 3500 square km with four sub-basins, an additional four new streamflow 

gauging stations will be constructed. The stations will be installed in four major stream channels in areas 

which might be ideal in measuring the required runoff and geologically stable for a long period of time, 

more preferably in bridges close to the outlet of each sub-basins. The stations will be monitored for a 

period of two years (2019-2020).  

4.3.1.2. Soil moisture data 

In this research work, together with streamflow, the soil moisture characteristics under different rainfall 

conditions will be simulated. However, for model verifications, soil moisture data is among the data 

drought fields in the study area. Hence, satellite-based soil moisture data (i.e.,  SM-DAS-2)  will be 

retrieved from the H-SAF database (EUMETSAT server) at the website: http://hsaf.meteoam.it/soil-

moisture.php. The SM-DAS-2 is the H-SAF root zone soil moisture index product based on Advanced 

Scatterometer (ASCAT) surface soil moisture data assimilation in the ECMWF Land Data Assimilation 

System. The database provides continuous estimates of soil moister at 4 layers: 0-7 cm, 7-28 cm, 28-100 

cm, 100-289 cm below the surface, 25 km horizontal resolutions and 24-hour time step, with global daily 

coverage at 00:00 UTC. It is a global product of consistent surface and root zone soil moisture available 

near real-time for NWP, climate and hydrological communities. Nevertheless, this dataset shall be 

validated with in-situ observations. For this reason, representative moisture sensors will be established in 

convenient areas where meteorological compounds and schools are found in and around the catchment. 

In-situ soil moisture observations up to the root depth ( 1̴.5 m deep) will be measured for two years (2019-

2020).  

4.3.1.3. Watershed characteristics: soil, water abstraction, land use and topography  

Watershed information such as soil properties (soil depth and soil texture), daily average water 

abstraction for different purposes, the land uses and terrain characteristics in the entire catchment are 

also among the important factors that affect model verification, simulation and prediction. These 

parameters will be collected through field survey to be conducted within the Zamra catchment (study 

area) and also derived from secondary sources such as Bureau of Water Resources and Irrigation for water 

abstraction, preferably from the Regional Agricultural Bureau, under which administrative units of the 

watershed is situated. Land use and topography information will be obtained from the Ethiopian Mapping 

Agency (EMA) and others sources at high resolution (30m or higher) such as Shuttle Radar Topography 

Mission (SRTM) and Hydrological data and maps based on Shuttle Elevation Derivatives at multiple Scales 

(HydroSHEDS) from U.S. Geological Survey (USGS) and Sentinel (2) from European Space Agency (ESA). 

Representative ground control points (GCP) for land use classification validation will be gathered using 

GPS and by preparing transect walk maps and land use data record sheets.  

4.3.1.4. Model input data   

The model forcing terrestrial inputs and meteorological data such as incoming shortwave and longwave 

radiation (W/m2), 2m-height specific humidity (kg/kg), 2m-height air temperature (K), surface 

http://hsaf.meteoam.it/soil-moisture.php
http://hsaf.meteoam.it/soil-moisture.php
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pressure(Pa), 10m-height surface wind in the horizontal and vertical component (m/s), liquid water 

precipitation rate(mm/s) will be extracted from WRF model (Kerandi et al., 2018). These data will be 

developed in a netCDF format to be reused by the WRF-Hydro model. For the routing modules, additional 

input fields such as maximum soil moisture, infiltration capacity excess, lateral surface hydraulic 

conductivity for each soil type and the soil moisture content for each soil layer will also be extracted from 

the Noah LSM. In addition to the aforementioned datasets, channel network data of the catchment will 

be acquired for accurately routing the hydrological process across the land surface. This input dataset will 

be prepared using the WRF-Hydro GIS Pre-Processing tool Version 5 (Sampson & Gochis, 2018). 

4.3.2. WRF-Hydro model description and configurations  

The coupled WRF-Hydro model is a, fully distributed, combination of the WRF model (see details in section 

4.2 and Skamarock et al., 2008) and WRF-hydrological model which is an extended version of the WRF 

model for hydrological modelling system (Gochis et al., 2018). This modelling system is a modelling 

architecture that enhances coupling of multiple hydrological processes which includes the spatially 

distributed land surface models, sub-surface flow routing models, overland and channel flow routing, 

conceptual baseflow models with that of the atmospheric models (Figure 4.8). The current version of 

WRF-Hydro (version 5.0) is designed in a way that can facilitate improved representations of the terrestrial 

hydrological process at higher spatial resolution (i.e., 1 km or less) using a variety of physics-based and 

conceptual approaches. The WRF-Hydro model can also be operated in a standalone (in an 

“uncoupled/offline”) manner as traditional land surface hydrological modelling system. Detailed 

information of the WRF-Hydro model is found in the WRF-Hydro modelling technical description (Gochis 

et al., 2018). 

The WRF-Hydro modelling system requires several input files that describes the model domain, 

parameters and initial conditions (Figure 4.9). The coding of the WRF-hydro system is flexible to 

accommodate these different input variables depending on the domain configurations. This will be done 

either by calling from the WRF model and/or by running in a standalone mode. The demand for input 

variables also depends on the selection of the model physics options and sub-component routing 

functions (Figure 4.8). In this study, a two-way coupled WRF-Hydro model version 5.0 with Noah-MP LSM 

physical option will be used (Gochis et al., 2018). This will be executed by nesting the meteorological 

inputs and land surface model from the inner domain do3 (Figure 4.6a). This will be performed by 

combining the geogrid files and meteorological forecast from WRF model with that of the high-resolution 

hydrologically conditioning data (USGS HydroSHEDS: Lehner et al., 2006),  using the WRF-Hydro GIS-

Preprocessing tool Version 5 (Sampson & Gochis, 2018) and the Noah SLM aggregation/disaggregation 

process. The domain-d03 with 3 km horizontal resolution will be further disaggregated by a factor of 10 

(Gochis et al., 2018) to form a high-resolution (300mX300m) hydrological routing grids-i.e., H300m (Figure 

4.10b). The hydrological routing will be defined with a threshold of 80 contributing grid cells, that is from 

around 7.2 km2 with routing timesteps of the 20 seconds. This routing grid resolution is within the finest 

terrain scale category that can be effective in formulating overland flow routings and in agreement with 

the recommendations of Gochis et al. (2018). Henceforth, all the hydrometeorological simulations will be 

based on the coupling processes between the atmospheric simulation on the domain-d03 and the routing 

processes on the 300m grid resolutions (Figure 4.10). 
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Figure 4.8. Generalized conceptual schematic  WRF-Hydro architecture showing the various categories of 

model components (adapted from Gochis et al. (2018)). 
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Figure 4.9: WRF-Hydro model configurations with input and parameter files organized by the model 

physics component (Gochis et al., 2018). 

In order to attain reliable coupling of the WRF-Hydro modelling system, the model needs additional efforts 

of functional modifications in relation to domain interest. For the routing process, the physical options 

such as the surface overland flow, subsurface flow, channel routing and baseflow will be activated.  

 

Figure 4.10: the study area together with the nested configurations of WRF domains at 27 km, 9km and 

3km resolution in the red, green and blue boxes in (a) and WRF-Hydro configuration and channel 

networking at 300m resolution with 80 number of contributing grids, five stream orders and four river 

stations in (b).  
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4.3.2.1. Subsurface routing  

The subsurface lateral flow will be estimated prior to the routing of overland flow (Gochis et al., 2018; 

Yucel et al., 2015). This is because exfiltration from fully saturated grid cells is added to the infiltration 

excess calculated from the LSM that ultimately update the surface head prior to routing of overland flow. 

In the WRF-Hydro default model implementations, a supersaturated soil column with 2-m soil depth is 

defined as a soil column that possesses a positive subsurface moisture flux. This saturated soil column is 

assumed to have four soil layers with a thickness of 10, 30, 60 and 100 cm from the top surface. Though 

the choice of soil layer configurations is quite subjective (Naabil et al., 2017),  the model is flexible to 

manually specify the soil depths and respective thickness depending on the domain characteristics. For 

this study, assuming a soil depth of the root zone ( 1̴.5 m) and in agreement with Naabil et al. (2017) and 

H-SAF for soil moisture monitoring, the subsurface routing model will be configured in four layers with a 

depth to the bottom layer of 7, 28, 100 and 200 cm from the surface. This is flexible to accommodate the 

in-situ soil column layer and their depth distribution from the field surveys.  

The subsurface routing model with an eight-direction (D8) steepest descent method will be used to 

calculate the lateral flow of saturated soil moisture that represents a quasi-three-dimensional steady-

state flow. The method includes the effects of topography, saturated soil depth, and saturated hydraulic 

conductivity. Using Dupuit-Forchheimer assumptions (Gochis et al., 2018), for a fixed grid cell size XiJ, (ith 

column and jth row), the saturated subsurface flow rate from XiJ cell (𝑞𝑖𝑗) at time t will be calculated as:  

𝑞𝑖𝑗 = 𝑇𝑖𝑗𝛽𝑖𝑗𝑊𝑖𝑗  𝑤ℎ𝑒𝑛 𝛽𝑖𝑗 < 0 … … … … (𝐸𝑞𝑢. 2) 

= 0     𝑤ℎ𝑒𝑛 𝛽𝑖𝑗 < 0 

Where Tij is the transmissivity of the cell, Wij is the width of the cell, 𝛽𝑖𝑗 is the water table slope and is 

calculated as the difference in water table depths between two adjacent grid cells divided by the grid 

spacing.  

4.3.2.2. Surface overland flow routing  

In this study, for the overland flow calculation, a 2-dimensional, spatially explicit, fully-unsteady, finite-

difference, diffusive wave algorithm will be used. The model accounts for backwater effects and allows 

for flow on adverse slopes (Naabil et al., 2017). Though it needs high computing resources, this method 

provides an accurate estimation of water movements across complex land surfaces (Gochis et al., 2018). 

The 2-dimensional diffusive wave equation uses the simplified version of the general Saint-Venant 

continuity equations as: 

𝜕ℎ

𝜕𝑡
=

𝜕𝑞𝑥

𝜕𝑥
+

𝜕𝑞𝑦

𝜕𝑥
= 𝑖𝑒 … … … … … … . (𝐸𝑞𝑢. 3) 

where h is the surface flow depth; 𝑞𝑥 and 𝑞𝑦 are the unit discharges in the x- and y-directions, respectively; 

and 𝑖𝑒 is the infiltration excess. In WRF-Hydro, the 2-dimensional flow across each terrain grid is calculated 

first in the x- then in the y-direction (Gochis et al., 2018). For instance, the overland flow in x- direction 

(𝑞𝑥) will be estimated using the Manning’s equation as: 

𝑞𝑥 = 𝛼𝑥ℎ𝛽 … … … … … … … … … … … . (𝐸𝑞𝑢. 4) 
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Where 𝛼𝑥 =
𝑆𝑓𝑥

1/2

𝑛𝑜𝑣
 , 𝑛𝑜𝑣 is the roughness coefficient of the land surface and is a tunable parameter and 𝛽 is 

a unit dependent coefficient expressed here as 5/3 for SI units and 𝑆𝑓𝑥 is the friction slope in the x-

direction described as: 

𝑆𝑓𝑥 = 𝑆𝑜𝑥 −
𝜕ℎ

𝜕𝑥
… … … … … … … … . . (𝐸𝑞𝑢. 5) 

Where 𝑆𝑜𝑥 is the terrain slope in the x-direction and 
𝜕ℎ

𝜕𝑥
 is the change in depth of the water surface above 

the land surface in the x-direction. 

4.3.2.3. Channel and reservoir routing  

For this study, the channel routing process with SLM gridded routing algorithms will be configured. The 

algorithm is based on a mass balance equation (a simplified version of the Saint-Venant continuity 

equation) for shallow water flow with one dimensional, variable time stepping diffusive wave formation 

(Gochis et al., 2018). This channel routing model will be defined in a pixel by pixel size (300mX300m) 

distributed across the predefined channel network of the domain. This is based on the principle that the 

water from each gridded cell transfers to the next cell in the channel network if the depth of ponded 

water (or surface head, ‘SFCHEADRT’) in each gridded cells exceeds a predefined retention depth 

(‘RETDEPRT’) (Gochis et al., 2018).  

The flow from each pixel is the only upstream-to-downstream direction. Within every channel grid cell, 

the channel geometry will assume as a trapezoidal shape with channel parameters such as stream Strahler 

order (St order), bottom width (Bw), initial water depth (HLINK), channel side slope (Ch SSlp) and 

Manning’s roughness coefficient (MannN). In the WRF-Hydro model, the default channel parameters are 

presented in Table 4.4. In this study, except Manning’s coefficient, all channel geometric properties will 

be set to their default values. This is consistent with Kerandi et al. (2018) and Yucel et al. (2015) that in 

areas with no sufficient channel cross-section data,  maintaining the default values is practical. The only 

parameter that needs calibrations because of its significant role in changing the river flow hydrograph is 

the MannN parameter (Silver et al., 2017; Yucel et al., 2015). 

Table 4.4.  Default channel parameter values ( Kerandi et al., 2018; Naabil et al., 2017; Yucel et al., 2015)  

St Order Bw HLINK Ch SSlp MannN 

1 5 0.02 3 0.65 
2 10 0.02 1 0.5 
3 20 0.02 0.5 0.45 
4 30 0.03 0.18 0.35 
5 40 0.03 0.05 0.20 
6 60 0.03 0.05 0.12 
7 60 0.03 0.05 0.03 

Having these input data,  the streamflow in an open channel (Q in m3/s)  will be estimated as function of 

flow hydraulics, channel storage and the lateral inflow contribution from each grid cell using the diffusive 

wave approximation (i.e., by ignoring the convective term in the momentum equation (Gochis et al., 2018; 

Yucel et al., 2015)) as : 
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𝑄 = −𝑆𝐼𝐺𝑁 (
𝜕𝑍

𝜕𝑥
) 𝐾√|

𝜕𝑍

𝜕𝑥
| … … … … … … … … … . . (𝐸𝑞𝑢. 6) 

Where the 
𝜕𝑍

𝜕𝑥
 is the fractional slope, the SIGN function is 1 for 

𝜕𝑍

𝜕𝑥
 >0 and -1 for  

𝜕𝑍

𝜕𝑥
< 0, Z water surface 

elevation (m), and K is from the Manning’s equation (m3/s) computed conveyance given by:  

𝐾 =
𝐶𝑚

𝑛
𝐴 𝑅2/3 … … … … … … … … … . . (𝐸𝑞𝑢. 7) 

Where n is Manning’s roughness coefficient, A is the cross-sectional area (m2), R hydraulic radius (m) 

and Cm is the dimensional constant (1.0 for SI units). 

4.3.2.4. Conceptual baseflow process 

In WRF-Hydro streamflow simulation, the baseflow parameter will be activated to conceptually (i.e. not 

physically-explicit) account the contributions of baseflow to streamflow. Herein, the groundwater flow 

system to stream network will be represented using a simple, empirical “catchment storage-discharge 

bucket model” with conceptual depth and storage capacity (Gochis et al., 2018; Senatore et al., 2015). In 

areas with lack of specific regional groundwater process information like Zamra catchment, the baseflow 

basin in WRF-Hydro is assumed to be the same as the topographic surface and the buckets can be defined 

from a true aquifer or hydrographic dataset such as, in this case, the USGS HydroSHEDS (Sampson & 

Gochis, 2018). For gridded channel routing, the total basin baseflow flux to the stream network is assumed 

to be equally distributed among all channel pixels within a catchment. Nevertheless, it is important to 

notice that this bucket model is highly abstracted and conceptualized representation of groundwater 

processes in that the depth of water values in the bucket and the parameters themselves do not refer to 

the actual aquifer systems (Gochis et al., 2018). Thus, the baseflow as part of streamflow will be estimated 

based on an exponential storage-discharge function as a function of a conceptual depth of water in the 

bucket “𝑖′′ as:   

𝑄𝑏𝑢𝑐𝑘𝑒𝑡 𝑜𝑢𝑡,𝑖 = 𝐶𝑜𝑒𝑓𝑓𝑖 𝑒𝐸𝑥𝑝𝑜𝑛𝑖 
𝑍𝑖

𝑍𝑚𝑎𝑥𝑖
 𝑤ℎ𝑒𝑟𝑒 𝑍𝑖 ≤   𝑍𝑚𝑎𝑥𝑖  

                              = Qbucket in,i,     𝑤ℎ𝑒𝑟𝑒 𝑍𝑖 > 𝑍𝑚𝑎𝑥𝑖
… … … … (𝐸𝑞𝑢. 8) 

Where Qbucket out is the outflow from the bucket model as baseflow, Qbucket in  is the bucket model inflow 

as recharge, Coeff is the bucket model coefficient, Expon is the bucket model exponent, 𝑍 is the initial 

depth of water in the bucket model, and 𝑍𝑚𝑎𝑥 is the maximum storage in the bucket before draining 

occurs. The initial values of the groundwater bucket model parameters are initially estimated analytically 

or ‘offline’ from WRF-Hydro and then can be modified through model calibration. The overall streamflow 

of the catchment will be then estimated by combining the baseflow from the bucket model with that of 

the lateral inflow from the overland flow that directly joins to the stream network.  

4.3.3. Model calibration 

The WRF-Hydro modelling system uses several parameters associated with ocean-atmosphere-terrestrial 

factors. Thus, the use of the WRF-Hydro model for hydrometeorological simulations needs proper 

calibration. For this study, a “step-wise’’ manual calibration procedure that controls the volume of 

hydrological variables and then their temporal variation will be executed.  This ensures that a model that 
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potentially simulate the volume of the hydrological components can later be calibrated in response to the 

time variations. In such calibration techniques and models with multi-parameters, parameters interaction 

effect is expected (Silver et al., 2017; Yucel et al., 2015). Nevertheless, Yucel et al. (2015) have emphasized 

that theses interaction effects can be reduced by employing various performance measures (section 

4.3.4). This has been further confirmed by Naabil et al. (2017) and Kerandi et al. (2018) in that calibration 

of the WRF-Hydro model manually with a step-wise approach have shown improved skills. 

 Herein, the response of coupled WRF-Hydro in simulating the runoff and soil moisture to the weights of 

four major factors: (1) the surface runoff parameter i.e., the infiltration scaling parameter (REFKDT), (2) 

surface retention depth scaling parameter (RETDEPRT), (3) overland flow roughness scaling parameter 

(OVROUGHRTFAC), (4) the channel Manning roughness coefficient scaling parameter (MannN) will be 

assessed. As a control simulation, the WRF-Hydro model will be running by maintaining the parameters 

at their default value. Next, the REFKDT and RETDEPRT parameters will be calibrated controlling the 

volume of the runoff and soil moisture content. The values of REFKDT and RETDEPRT varies in a range 0.1-

10 and 0.0-5.0, While the model default values are 3.0 and 1.0, respectively. In the last step, the response 

of the river hydrograph shape and soil moisture graph in relation to different values of OVROUGHRTFAC 

(0.0-1.0) and MannN will be calibrated. The OVROUGHRTFAC parameter is an important parameter of the 

Noah LSM model which decides the amount of excess water that can transfer to the channel network. 

The shape of the hydrograph can also be affected by the channel properties of the river geometry (Table 

4.3). The default values of channel Manning’s roughness coefficients presented in Table 4.3 are based on 

textbook values (Yucel et al., 2015).  For every run in the calibration of the WRF-Hydro model in response 

to the change of MannN value, instead of changing Manning coefficient for different stream order 

individually, the use of scale factor is a more practical approach (Kerandi et al., 2018; Yucel et al., 2015). 

Herein, the scale factor which ranges from 0.6 to 2.1 with 0.1 increments will be employed as a calibration 

parameter of the MannN.  

For this calibration, in agreement with recent studies (Kerandi et al., 2018; Silver et al., 2017; Yucel et al., 

2015), the uncoupled WRF-Hydro modelling will be used. Herein, the forcing initials such as the 

meteorological and geographical inputs will be remapped from the WRF model and a gridded netCDF 

format files will be prepared (Gochis et al., 2018). The optimal parameter values will be then selected by 

comparing simulated values with that of the in-situ hydrometeorological observations. For the 

calibrations, one/two year of discharge data (2019 or/and 2020) and for validation 2021 will be used. 

These time series are selected considering the availability of observed dat. The use of one-two years’ time 

series data in WRF-Hydro model verification is a common practice (Naabil et al., 2017; Silver et al., 2017) 

and reasonably enough (Kerandi et al., 2018).  

4.3.4. Performance evaluation  

The performance of the WRF-Hydro model in simulating the hydrometeorological variables will be 

assessed using four error statistical methods (Appendix: section 8.1): the Nash-Sutcliffe Efficiency (NSE) 

given by 𝐸𝑞𝑢. 8.9 and the RMSE (𝐸𝑞𝑢. 8.5), ME (𝐸𝑞𝑢. 8.2) and Pearson correlation coefficient (𝐸𝑞𝑢. 8.1). 

This will be supported by the Taylor diagrams (Taylor, 2001) which will be employed to visualize the 

strength and weakens of different WRF-Hydro calibrations and configurations in reproducing the 

observed runoff and soil moisture values.  
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4.4. Summary of a proposed methodological framework 

Generally, the schematic workflow and the overall methods are presented in Figure 4.11.   

 

Figure 4.11: Summarized schematic workflow to improve seasonal and sub-seasonal rainfall, river flow and soil moisture predictions over Northern Ethiopia. 

  

 

 

Improved seasonal and sub seasonal Rainfall, 
river flow and soil moisture forecasts 
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5. Expected output  

At the end of this project work, the following research outputs are expected 

➢ A review of existing seasonal and sub-seasonal prediction methods;  

➢ A JJAS rainfall prediction framework based on oceanic-atmospheric teleconnections  

➢ Customized numerical weather and climate prediction model for seasonal and sub-seasonal 

prediction over Northern Ethiopia;  

➢ JJAS rainfall distribution maps at 3km or less spatial resolution and daily, monthly, sub-

seasonal and seasonal timescales for Northern Ethiopia;  

➢ Joint atmospheric-terrestrial model for seasonal and sub-seasonal hydrometeorological and 

streamflow predictions 

➢ Three (four) paper in high impact peer-reviewed journals;  

o Investigate the teleconnections between global climate driving factors and seasonal 

and sub-seasonal rainfall variation over Northern Ethiopia  

o Customize the WRF model as a regional climate model for seasonal and sub-seasonal 

rainfall prediction in Northern Ethiopia  

o Sensitivity analysis of global SST and zonal winds in a complex topography in the 

prediction of the JJAS rainfall at seasonal and sub-seasonal timescales over northern 

Ethiopia. 

o Joint atmospheric-terrestrial (WRF-Hydro) modelling for seasonal and sub-seasonal 

hydrometeorological predictions in Upper Tekeze Basin, Northern Ethiopia. 

➢ Two MSc thesis:  

o over Northern Ethiopia: a case study of  

▪ Spatio-temporal precipitation trend analysis  

▪ Water abstraction for agricultural production 

➢ One dissertation: seasonal and sub-seasonal rainfall and river flow prediction over Northern 

Ethiopia  

➢ Policy brief documents from the major research findings for proper planning land use 

dynamics, early warning, preparedness, disaster protection.  
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6. Research and academic work plan  

Table 6.1: the time frame for the overall PhD project work. Where Q represents a length of three months of a year. In the Table hereunder, as the PhD is a sandwich program, 

the overall time distribution between ITC, UT and Mekelle University (MU), Ethiopia are also indicated in yellow and blue shades, respectively. As per the schedule, some 

data such as forcing initials (meteorological and static data) from NCAR, Research Data Archive (website: https://rda.ucar.edu/ ); oceanic- atmospheric data (SST and Zonal 

wind, climate indices data) and CHIRPS data from IRI, Climate Data Library( website: http://iridl.ldeo.columbia.edu/ ) and observed daily rainfall data from NMA, Ethiopia  

were collected. 

No Activity Years  

I  
(July 2018- June 

2019) 

II  
(July 2019- June 

2020) 

 III  
(July 2020- June  

2021) 

IV  
(July 2021- June 

2022) 
ITC, UT MU, Ethiopia ITC, UT MU, Ethiopia ITC, UT 

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 

1 Literature review                                 

2 Proposal development                                  

3 Coursework and Training                                   

4 Qualifier                  
5 Year I. Progress Report                  

6 Fieldwork 1: data collection for Objective 1 and 2                                 

7 Data analysis and paper write up of for objectives 1 and 2 and 
submission paper 1 and 2 for publication  

                                

8 Seminar participation                    

9 Year II. Progress Report                 

7 Fieldwork 2: data collection for Objective 3                                  

8 Data analysis and paper write up for Objective 3 and 4 and 
submission 3rd paper for publication 

                                

9 Year III. Progress Report                 

10 Fourth paper write up and submission for publication                 

11 Incorporate comments and suggestions                                 

12 Final thesis organization, synthesis, and submission                                 

13 Defence                 

https://rda.ucar.edu/
http://iridl.ldeo.columbia.edu/
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8. Appendix  

8.1.1 Pearson’s moment correlation coefficient  

For continuous time series pairs (𝑌𝑡 , 𝑋𝑡) variables, the Pearson’s moment correlation coefficient will 

be calculated as;  

𝐶𝑜𝑟 (𝑌𝑡 , 𝑋𝑡) =
∑ (Y𝑡 − Y̅)𝑛

𝑡=1 (X𝑡 − X̅)

σY ∗ σX
… … … … … (𝐸𝑞𝑢 8.1) 

Where 𝑡 isa  time series of 𝑛 sample size(t = 1, 2, 3, … , n), σY and σX are the standard deviations 

of the  𝑌𝑡  𝑎𝑛𝑑 𝑋𝑡  and Y̅ and X̅ are the mean values of the 𝑌𝑡  𝑎𝑛𝑑 𝑋𝑡 variables , respectively. The 

ocean-atmospheric variables that show close to 1 or -1 correlation value indicate strong 

dependency. 

8.2 Statistical methods  

8.2.1 Multiple linear regression  

For continuous time series data with ith sample series, and n sample size (i.e.,  i= 1, 2, 3,…, n), if  the 

rainfall (predictand) response (Pi) is depending on the oceanic-atmospheric changes of the SST 

anomalies (SSTij , where j represents oceanic regions,  j= I,2, 3, ..., n) and the zonal winds  (Uik, where 

k is zonal wind levels,  k= 1, 2, 3,…, n),  the relationship will be developed using a multiple linear 

regression model as;  

𝑃𝑖 = 𝛽1 𝑆𝑆𝑇𝑖𝑗 +  𝛽2𝑢𝑖𝑗 + 𝜀 … … … … … … … … (𝐸𝑞𝑢. 8.2) 

Where 𝛽1 and 𝛽2 are the regression coefficients, and  𝜀 is the error. 

8.2.2 Accuracy measures  

The accuracy of the regression model in relation to the in-situ observation values will be evaluated 

using Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Bias (Mean Error). This 

measures the difference between model simulations and in-situ observations and will be calculated 

using Equ. 8.4 for MAE, Equ.8.5 for RMSE and Equ.8.3 for the Bias (ME). RMSE estimates the average 

squared difference between the forecasts and observation which helps to determine the systematic 

and random error. While the Mean Error (ME) measures the difference between the model-simulated 

and observed rainfall due to systematic errors. A zero or closes to zero value of these statistical 

methods indicate the perfection or good accuracy of the statistical model. 

𝑀𝐸 = 𝐵𝑖𝑎𝑠 =  
1

𝑛
∑(𝑂𝑏𝑠𝑡 − 𝑆𝑖𝑚𝑡) =  … … … … (𝐸𝑞𝑢. 8.3)

𝑛

𝑖=1

 

𝑀𝐴𝐸 =  
1

𝑛
∑|𝑂𝑏𝑠𝑡 − 𝑆𝑖𝑚𝑡| … … … … … … … … (𝐸𝑞𝑢. 8.4)

𝑛

𝑡=1

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑂𝑏𝑠𝑡 − 𝑆𝑖𝑚𝑡)2

𝑛

𝑡=1

 … … … … … … … (𝐸𝑞𝑢. 8.5) 

8.2.3 The Skill Score (SS) techniques 
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The SS indicates how the model improves the forecast skill in relative to the reference forecast. In 

continuous variable, the term reference forecast usually states the climatology or persistence 

(Warner, 2011). In this study, the skill score (SS) of the prediction models will be estimated using the 

Mean Square Error (MSE: Warner, 2011) as it is given by Equ.8.6. 

𝑆𝑆 = (1 −
𝑀𝑆𝐸

𝑀𝑆𝐸𝑟𝑒𝑓
) ∗ 100 … … … … … … … … … … (𝐸𝑞𝑢. 8.6) 

Where the MSE is estimated as;   

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑂𝑏𝑠𝑡 − 𝑆𝑖𝑚𝑡)2

𝑛

𝑡=1

… … … … … … … … . . (𝑒𝑞𝑢𝑎. 8.7) 

𝑀𝑆𝐸𝑐𝑙𝑖𝑚 = 𝑀𝑆𝐸𝑟𝑒𝑓  =  
1

𝑛
∑(𝑋 ̅ − 𝑂𝑏𝑠𝑡)2 … … … … . (𝐸𝑞𝑢.  8.8)

𝑛

𝑡=1

 

Where 𝑋 ̅ is the climatological mean of the observed rainfall (X) of the area and the SS value close to 

zero indicates no improvement on the foresting skill.  

8.2.4 Nash-Sutcliffe Efficiency (NSE) 

The NSE coefficient provides normalized indicators of the goodness-of-test of hydrological models. It 

measures the accuracy of the model outputs (mainly runoff and soil moisture) in relation to in-situ 

observations (Naabil et al., 2017). For a minimal acceptance of hydrometeorological models, the NSE 

value should be between 0 to 1.0 and the threshold value of NSE that indicates sufficient prediction 

skill of the WRF-Hydro model should be between [0.5, 0.65].  

𝑁𝑆𝐸 =
∑  (𝑄𝑠𝑖𝑚

𝑡𝑇
𝑡=1 −𝑄𝑜𝑏

𝑡 )2

∑  (𝑄𝑜𝑏
𝑡𝑇

𝑡=1 −𝑄𝑜𝑏̅̅ ̅̅ ̅̅ )2 … … … … … . . (𝐸𝑞𝑢. 8.9)  

 

Where 𝑄𝑜𝑏
𝑡  and 𝑄𝑠𝑖𝑚

𝑡
  are observed and model simulated river flows at a time series t, respectively.  

8.2.5  Taylor diagram  

In this study, the Taylor diagrams (Taylor, 2001) will be employed to visualize the strength and 

weakens of different model parameters and configurations in reproducing the observed values. The 

diagram will present the RMSE, correlation and standard deviation between the model simulated and 

observations in a single window on a 2-D polar coordinates plot. This diagram may suggest  the optimal 

model parameters and also provides  the errors due to the limitations of different configurations 

(Abdelwares et al., 2017; Andrys et al., 2015; Hoedjes et al., 2014; Iguchi et al., 2017; Li et al., 2014; 

Noble et al., 2017). 

 


