UNIVERSITY OF TWENTE.

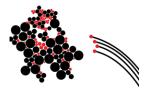
SPATIO-TEMPORAL WATER RESOURCE RESPONSES TO LAND USE LAND COVER CHANGE IN SEMI-ARID UPPER TEKEZE BASIN, NORTHERN ETHIOPIA

MEWCHA AMHA GEBREMEDHIN

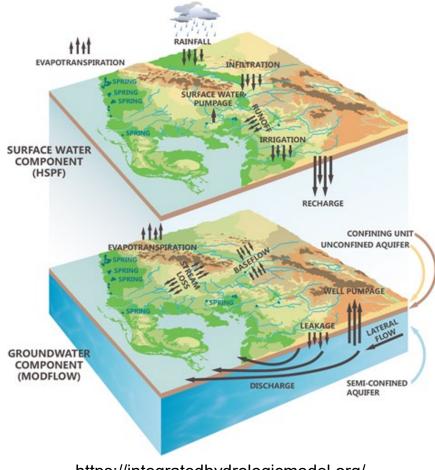
Committee members: DR. IR. M.W. Lubczynski DR. B.H.P. Maathuis DR. Daniel teka

(PROMOTER)UNIVERSITY OF TWENTE, ITC(CO-PROMOTER)UNIVERSITY OF TWENTE, ITC(CO-PROMOTER)MEKELLE UNIVERSITY, I-GEOS

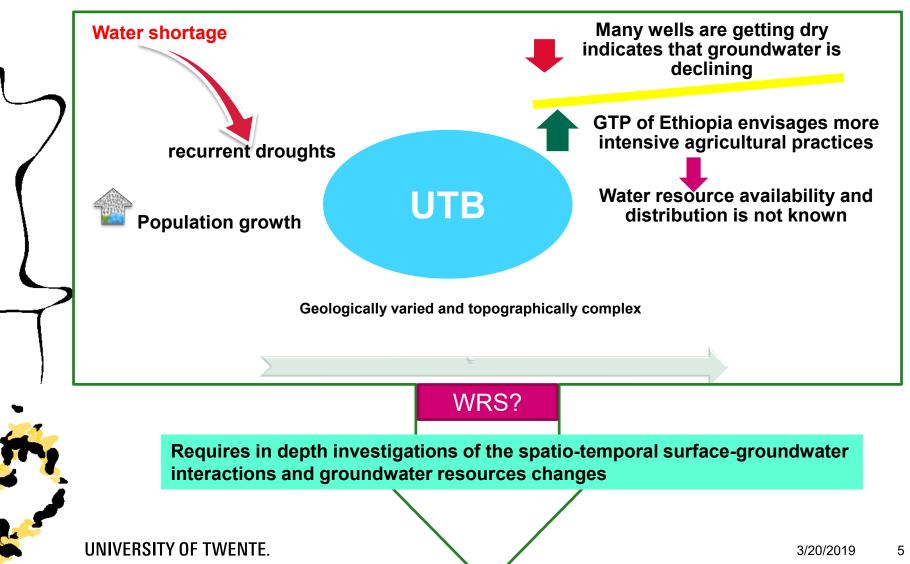
Presentation outlines


- Introduction
- Motivation
- Objectives
- Methodology
- Expected output
- Workplan

Introduction


- water availability is declining while population growth is increasing
 - seriously affecting the economic growth
- It is a critical problem in arid and semi-arid areas
 - different factors
- LULC change alter quantity and distribution SW-GW resources

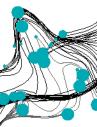

Introduction


- Investigating SW-GW interaction in space and time is growing field of research
 - sustainable water resources management
- IHM are playing key role in this field by integrating with geospatial data and geospatial technologies
 - simulate water flux and detail water balances

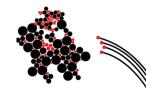

Motivation


Motivation

- The poor coverage of ground-based hydro-meteorological gauging stations is a challenge
 - RF and PET at reasonable resolution
 - state variable (groundwater level and stream flow) for validation
- Therefore integrating satellite products in data scarce of UTB is required



Objectives



The aim of this study is to conceptualize and quantify spatio-temporal water resources and their response to LULC in the semi-arid UTB, Northern Ethiopia

- Validate and merge daily satellite derived rainfall and potential evapotranspiration estimations with in-situ observations
- Setup and calibrate an integrated hydrologic model to quantify spatiotemporal surface-groundwater interactions and groundwater resources
- Predict future water resources changes in response to future LULC change

Study area

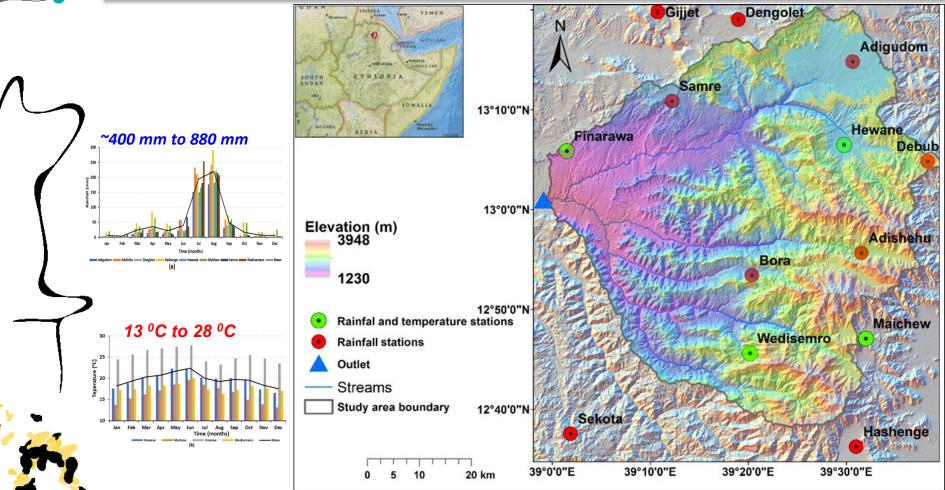
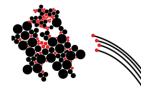
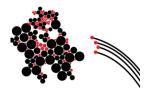
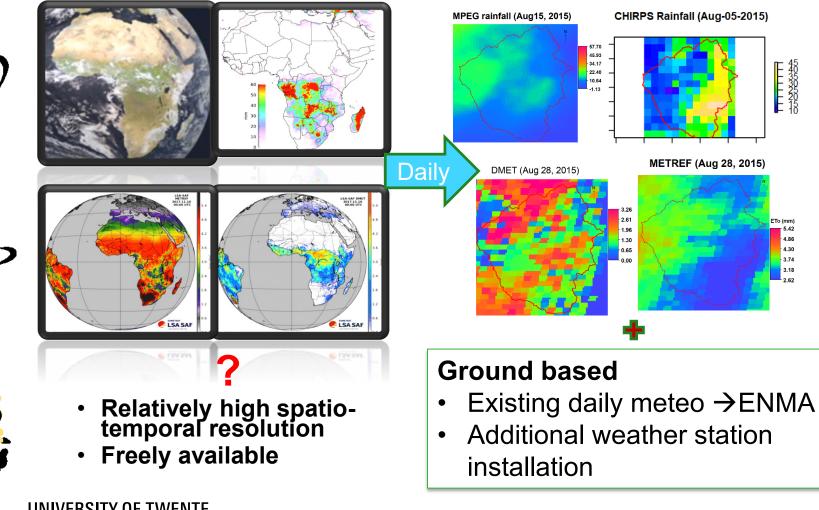



Figure 1: study area

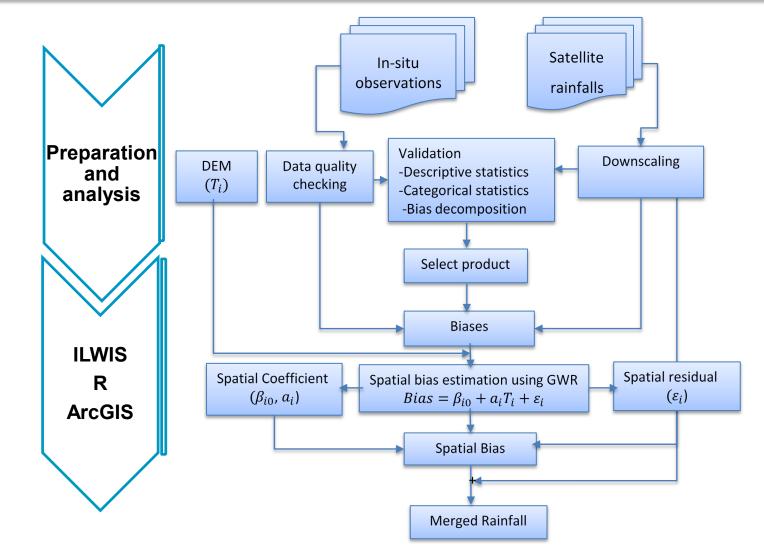
Validate and merge daily satellite derived rainfall and potential evapotranspiration estimations with in-situ observation– Objective-I



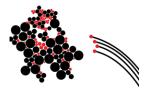
Research questions


- What is the temporal and spatial performance of satellite rainfall and potential evapotranspiration estimations in semi-arid area with complex topography?
- How can the satellite rainfall and potential evapotranspiration be integrated with in-situ observations for improved bias correction?
- What is the spatio-temporal variability of potential evapotranspiration?

Data acquisition – Objective-I



Satellite products



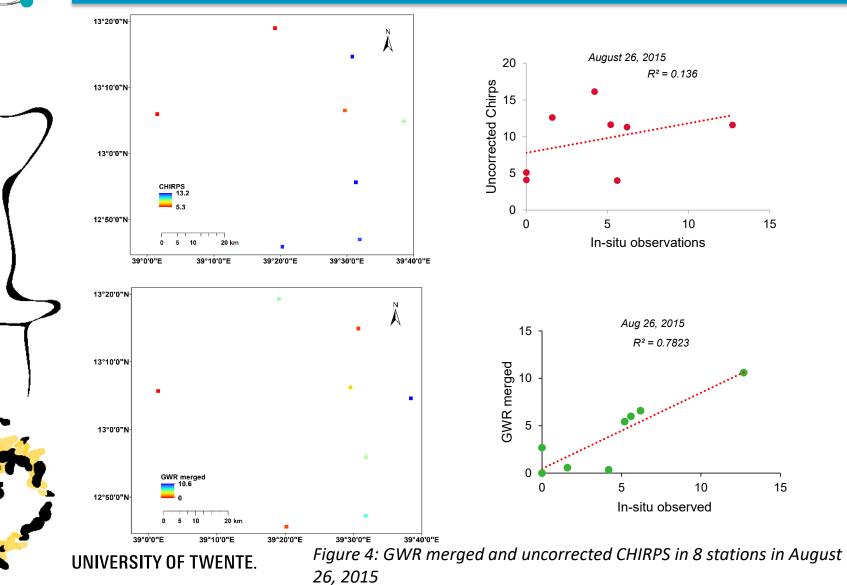
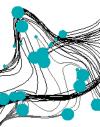
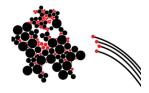
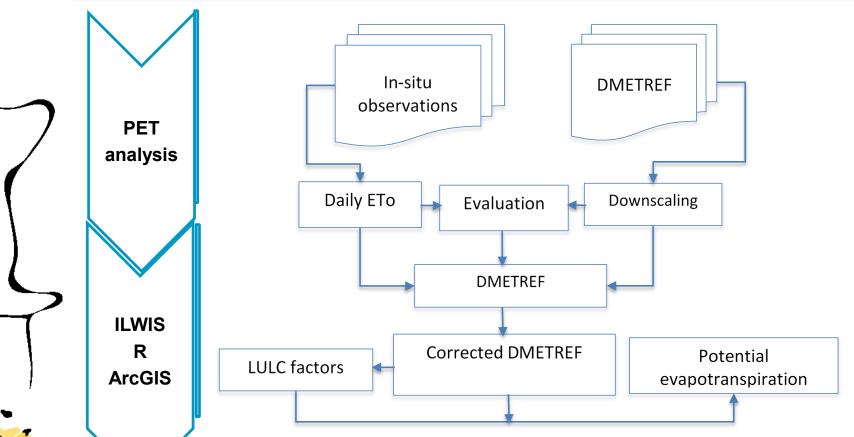

UNIVERSITY OF TWENTE.

Figure 3: Flow chart of satellite rainfall evaluation and merging



Preliminary results- Rainfall





12

Methodology- DMETREF

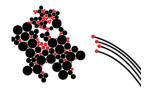
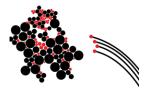


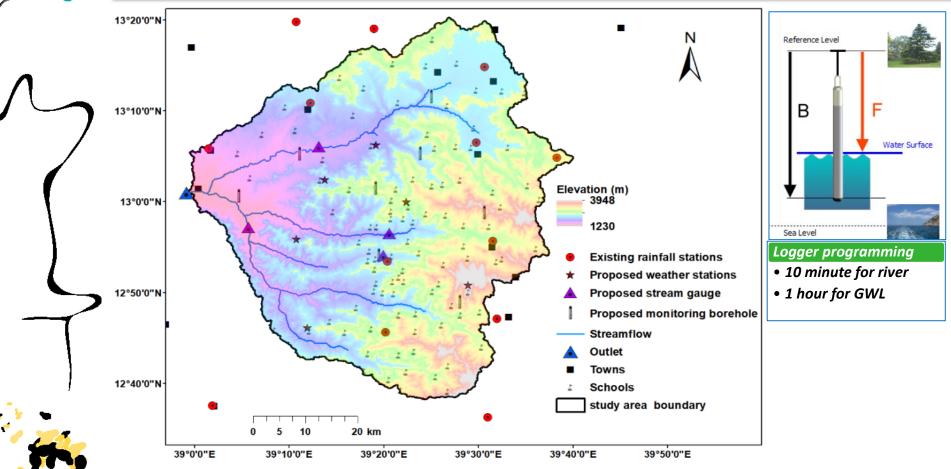
Figure 6: Flow chart of satellite reference evapotranspiration evaluation and conversion to potential evapotranspiration

Setup and calibrate an integrated hydrologic model to quantify spatiotemporal surface-groundwater interactions and groundwater resources - Objective-II

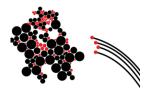
Research questions

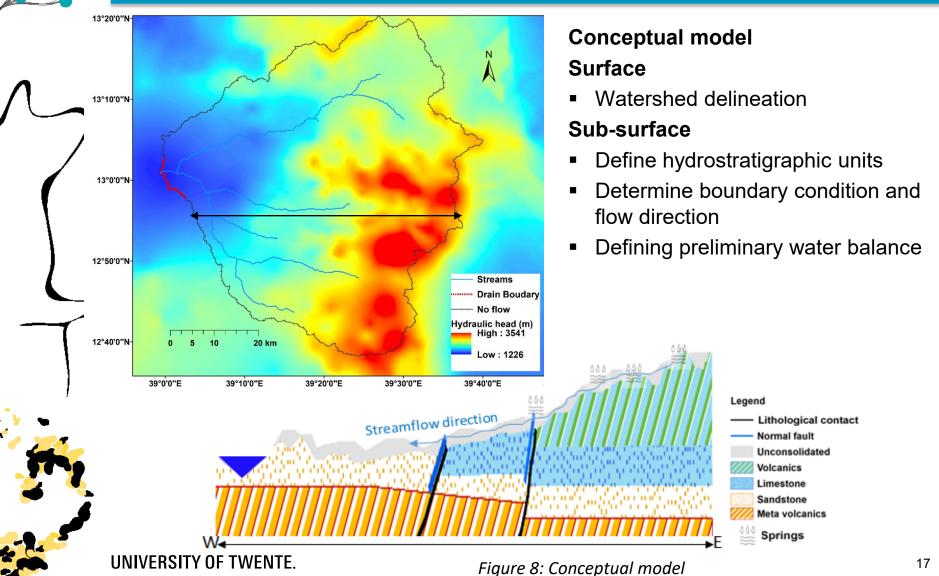

- What is the hydrogeological conceptual model to represent the surface-groundwater interaction?
- How surface-groundwater interactions and groundwater resources are characterized spatially and temporally with the timeline of model simulation?
- What is the spatio-temporal variability of net recharge and aquifer storage in response to different LULC?




Data acquisition – Objective-II

7	Satellite product Improved RF and PET • Objective-I Satellite images • http://earthexplorer.usgs.gov/ Vegetation density • NDVI of satellite image	Ground based River discharge • MoWR • Additional automatic data loggers Groundwater level • Monitoring Soil data • EthioSIS Geology and hydrogeology maps • EGS Borehole log information • national and regional bureau of water resources
)	projected/geo	checked and re- preferenced to ordinate system


Proposed instrument installation



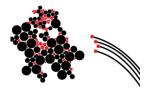
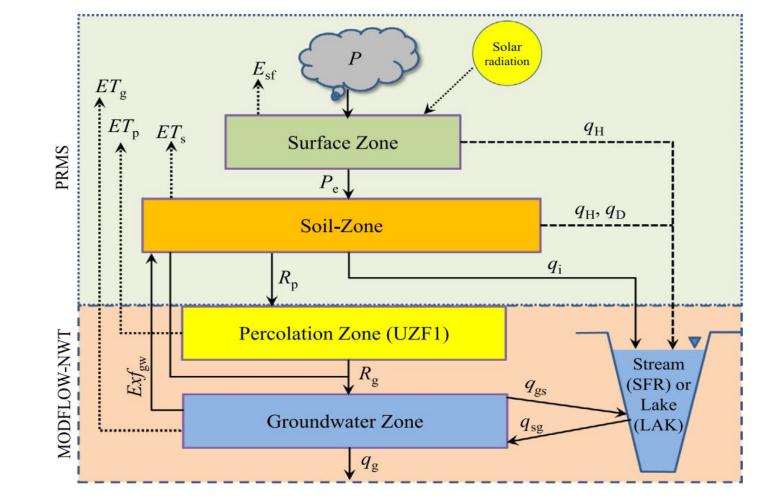
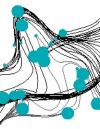
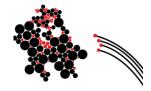
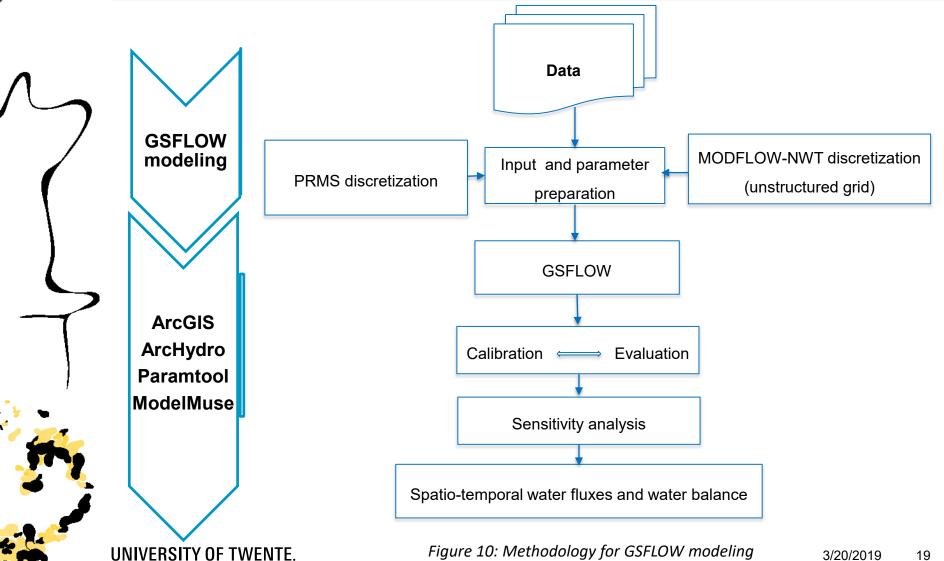


Figure 7: proposed borehole monitoring, weather station and stream gauge locations



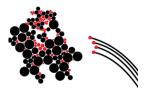



GSFLOW model will be use



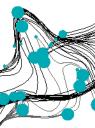
UNIVERSITY OF TWENTE.

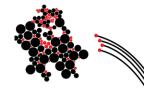
Figure 9: GSFLOW setup (Hassan et al., 2014)

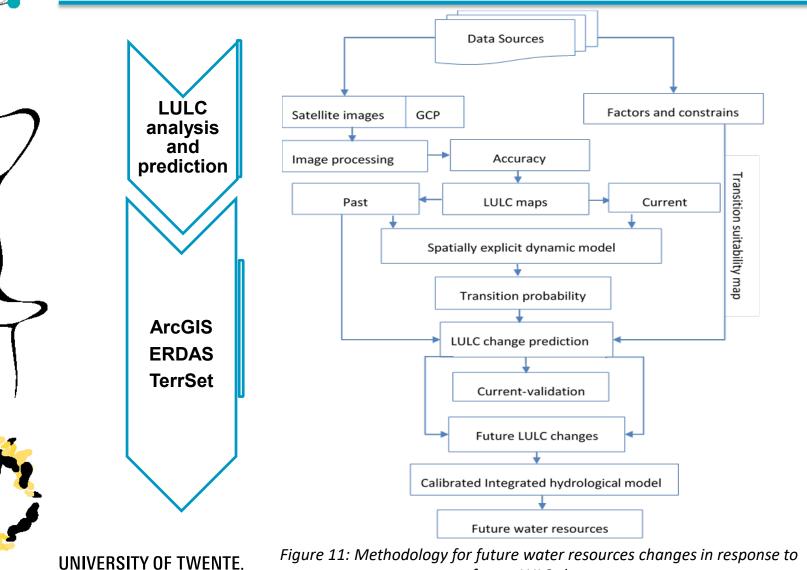

Predict future water resources changes in response to future LULC change- Objective-III

- What is the past trend in LULC change?
- What are the main driving factors for LULC change and how could be prioritized considering water impact?
- What is the predicted LULC change?
- How sensitive is the water resources change in response to future LULC change?

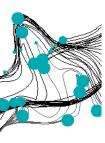
Data acquisition – Objective-III

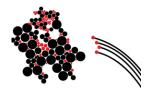



Ground based data/ancillary data


- LULC factors
- GCP from ground

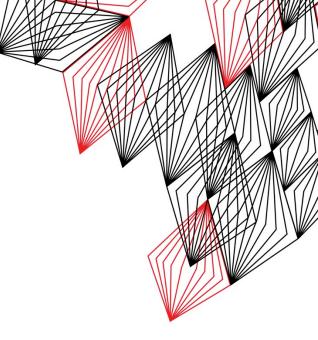
Remote sensing data


- Landsat images for 1990, 2000 and 2018
- Sentinel-2 for 2018
- DEM

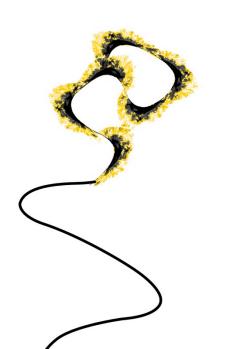


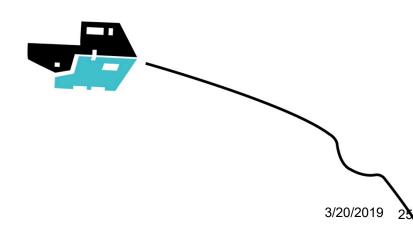
future LULC change

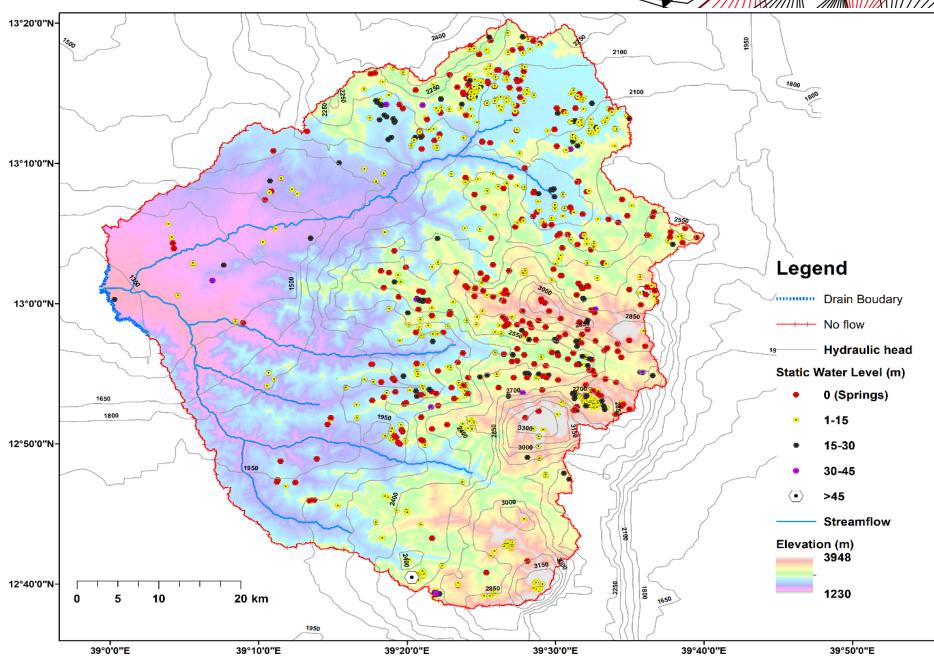
Expected outputs



- Provide quantified water fluxes and detailed water balance of the study area for effective water resource decision making
- Integrated hydrological modeling that can be scaled to other basins
- Four published papers in peer reviewed journals
 - Validating and improving satellite rainfall in UTB
 - Spatio-temporal variability of potential evapotranspiration in UTB
 - Assessment of surface-groundwater interaction in data scarce
 UTB using integrated hydrological modelling approach in UTB
 - Water resources changes under future land use land cover changes in UTB


Work plan


	A - 12 - 12 - 12		8		2019								2020									2021								2022			
No	Activities		s o	Ν	DJ	F	MA	M	l l	A	s o	Ν	DJ	F	MA	М	l l	AS	0	N D	J	FIN	1 A	M	ן ר ו	AS	0	ND	JF	M	AN	I I I	
1	Literature review																								П					П	T	TT	
2	Proposal development																																
3	Progress report																																
4	Seminars and workshopes																																
5	Course work																																
6	Fieldwork and data collection									Ш																							
7	MSc students supervision																																
8	Satellite rainfall and potential evapotranspiration analysis																																
9	Hydro-geological conceptual model development																															\Box	
10	Integrated hydrological modeling developemnt																																
11	LULC change analysis and prediction																																
12	Result analysis and writeup							-						_																			
	i. Validating and improving satellite rainfall and potential evapotranspiration																																
	ii. Hydro-geological conceptual model																																
	iii. Surface-groundwater interaction in data scarce environment using																				Н												
	integrated hydrological modelling																										Ш	\perp	╨				
	iv. Water resources changes under futre LULC changes																										Ш						
13	13 Manuscript preparation and send to Journal publication																																
	i. Validating and improving satellite rainfall																												Ш				
	ii. Spatio-temporal variability of potential evapotranspiration in UTB									Ц											4			_			\square	\perp	╨		\perp		
	iii. Assessment of surface-groundwater interaction in data scarce																																
	environment using integrated hydrological modelling approach in UTB																																
	iv. Water resources changes under future land use land cover changesLULC																				П									П		\square	
	changes																																
14	Thesis submission																																
	Key:																																
	ITC,UT																																
	MU, Ethiopia																												\square				
	ITC and MU																																


UNIVERSITY OF TWENTE.

THANK YOU!

