

Qualifier seminar

Seasonal and sub-seasonal rainfall and river flow prediction over Northern Ethiopia

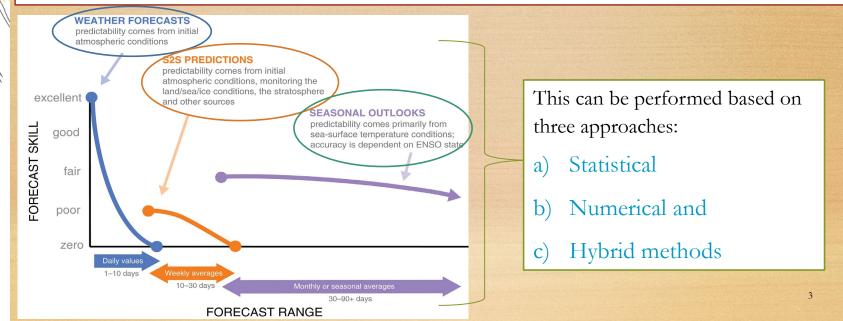
Alem Tadesse Haile

Supervisory Committee:

Dr.ir. Chris Mannaerts (promoter)Dr. B.H.P. Maathuis (co-promoter)Dr. Amanuel Zenebe (co-promoter)

ITC, University of Twente, ITC, University of Twente Mekelle University, Ethiopia

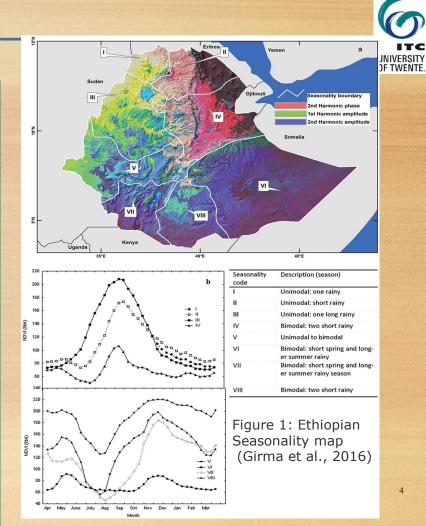
Presentation outline


- ✓ Introduction
- ✓ Problem of statement
- ✓ Research objective
- \checkmark Research design and methods
- ✓ Expected output
- ✓ Work plan

State-of-the-art weather and climate prediction system

- > Globally, high demand for reliable and accurate weather and climate predictions
- > However, this is a challenging task due to the chaotic ocean-atmosphere-land surface interaction

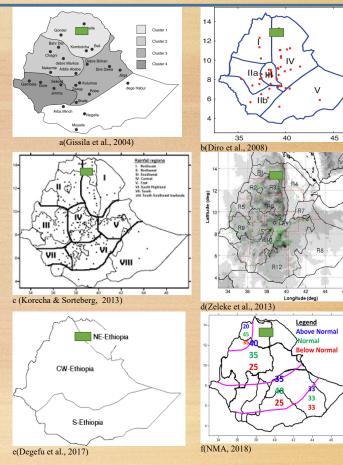
UNIVERSITY OF TWENTE


> Three types of weather and climate predictions (White et al. 2017):

Statement of problem

.

- Similarly, in Ethiopia, there is high demand for skilful hydrometeorological prediction and simulations
 - GTP II
 - Frequent and severe droughts
- However, achieving accurate predictions is the most difficult task, due to complex climate system,
 - Numerous ocean-atmospheric factors
 - Complex topography (-76 up to 4550 m.a.s.l)



Statement of problem

• For example, there are some studies on Ethiopian rainfall predictions, based on

statistical relationships

- However, their findings is inconsistent
 - I. Use different homogenous prediction regions
 - II. Based on insufficient historical data
 - III. Homogenous regions with correlation < 51%.</p>

Figure 2.2 Homogenous regions for seasonal rainfall prediction

Statement of problem

- Nevertheless, the Ethiopian MA prediction system uses analogue year method (Korecha & Sorteberg, 2013)
 - ✓ only trends of ENSO anomalies with✓ PRSS of 10%-weak to moderate skill
 - \checkmark worst for the extreme conditions
- Moreover, studies on site specific
 hydrometeorological (rainfall, runoff and soil moisture) predictions at s2s and seasonal temporal scales using either numerically or
 hybrid models are limited

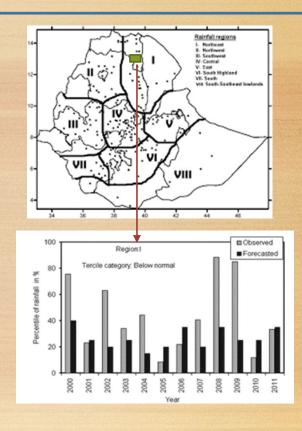
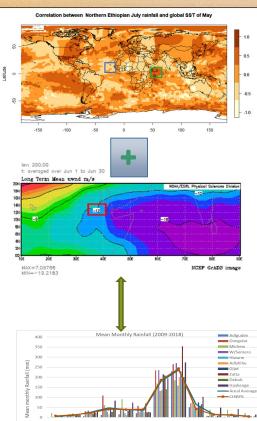
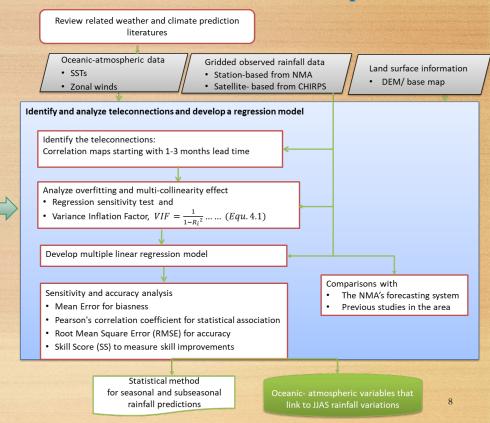


Figure 1.1: observed vs predicted rainfall (Korecha and Sorteberg, 2013)


Objective


General objective is:

- to improve hydrometeorological (rainfall, river flow and soil moisture) predictions with a lead time of 10 days to four months (JJAS rainfall) over Northern Ethiopia.
- Research objectives (RO):
 - ✓ RO1: Investigate the teleconnections between the major climate driving factors and seasonal and sub-seasonal rainfall variation over Northern Ethiopia
 - ✓ RO2: Customize a coupled numerical model (WRF model) as a regional climate model for seasonal and sub-seasonal rainfall predictions over Northern Ethiopia
 - ✓ RO3: couple the atmosphere to the terrestrial models (WRF-Hydro) for seasonal and subseasonal hydrological predictions of the Upper Tekeze Basin in Northern Ethiopia

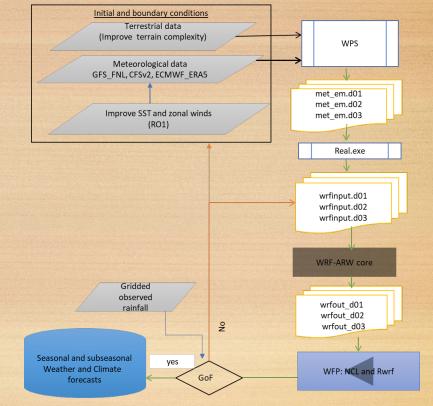
RO1: Investigate the teleconnections between global climate driving factors and seasonal and sub-seasonal rainfall variations over Northern Ethiopia

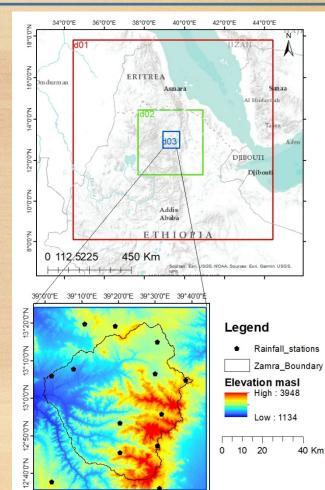
UNIVERSITY OF TWENTE.

RO2: Customize a coupled numerical model (the WRF model) as a regional climate model for seasonal and sub-seasonal rainfall prediction over Northern Ethiopia

The WRF model

- WRF-ARW model (version 4.0...)
- It is non-hydrostatic, mesoscale NWCP and atmospheric simulation system (Skamarock et al., 2008)




Figure 4.4: Schematic methodological flowchart

UNIVERSITY OF TWENTE.

UNIVERSITY OF TWENTE.

RO2: Domain configuration-control

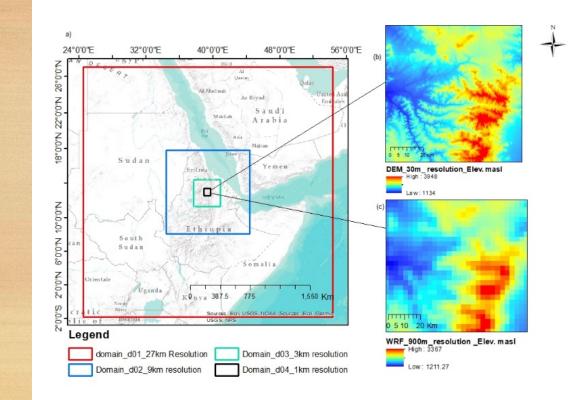
Centre Nesting Domains HR Area (Grid cells), Vertical resolution VCS 13⁰ N and 39.4⁰ E
Two-way with 1:3 ratio
d01, d02 and d03
27 km, 9 km and 3 km
41X41, 40X40 & 31X31
L28 with 5000Pa
HVC (default)

10

RO2: Model configurations- control

WRF model requirement	Schemes	Configurations MODIS, 30s				
Forcing initials	Geographical input: high resolution mandatory fields					
	Meteorological input: ECMWF-ERA5 reanalysis	6-hourly daily data at 31km horizontal resolution				
Physical options	Cumulus convection (CU)	Kain-Fritsch (KF)				
Abdelwares et al.,	Microphysics (MP)	WRF Single-Moment 6-Class scheme (WSM6)				
2017;	Planetary Boundary Layer (PBL)	Mellor-Yamada-Janjic (MYJ)				
• Kerandi et al., 2017;	Long-wave radiation (LW)	NCAR Community Atmosphere Model (CAM)				
• Pohl et al., 2011	shortwave radiation (SW)	CAM				
	Land surface model (LSM)	Noah Land Surface model (Noah-LSM)				
Simulation time	6 months for 4/5 years (2015-2019)	Simulation starts at April 01, 2015 and				
		integrates on September 30, 2015				

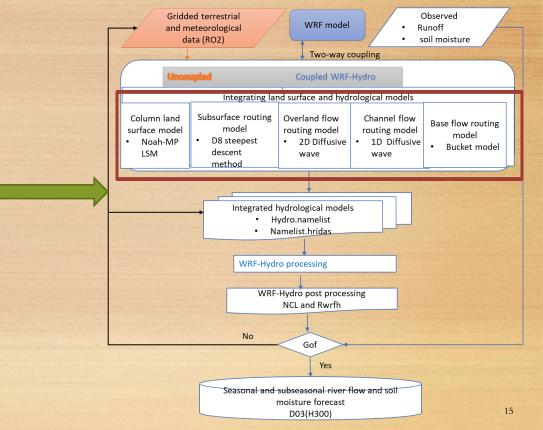
RO2: WRF model optimizations- Experiments



In areas with complex topography and climate system, what will be the prediction skill of WRF model if...?

Experiments	Schemes	Configurations				
	Cumulus convection (CU)	KF, BMJ & GFI				
	Microphysics (MP)	Lin, WSM6 & Morrison				
1. Physical options	Planetary Boundary Layer (PBL)	MYJ, YSU & ACM2 CAM, RRTM & RRTMG_K				
	Long-wave radiation (LW)					
	shortwave radiation (SW)	CAM, Dudhia & Goddard				
2. Initial and boundary conditions	GFS-FNL	6-hourly daily forecasts at 0.25 ⁰ horizontal resolution				
	CFSv2	6-hourly daily forecasts at 0.2 ⁰ horizontal resolution				
3. Vertical resolution and coordination	Vertical resolution	51 layers with 1000Pa				
system	Vertical coordination system	Terrain-following system				
4. Horizontal resolution	Domain name	Parent domain (d01), d02, d03 and d04				
	Domain Horizontal resolution	27 km, 9 km, 3km and 1km				
	Area coverage (grid cells)	121X121, 41X41, 40x40 & 31x31				
5. Geographical input	Topography, land use and soil	Compare model representations with the reality				
	type	Improving through resampling techniques				
6. Teleconnection (RO1)	SST and Zonal wind	 Sensitivity test, especially +/- SST anomalies and 				
		topography				
Method of optimization		Step-wise evaluations				
Method of optimization						

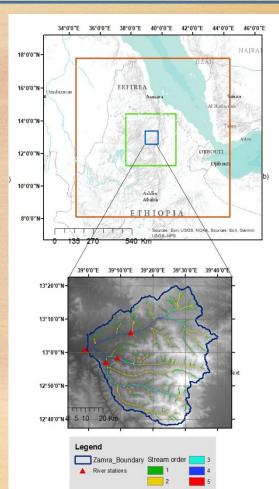
RO2: Example, horizontal resolution and topography


RO2: Methods of analysis and performance evaluation

- Analysis will be at two temporal scales.
 - For the s2s prediction: daily simulation (10 to 60 days) and/or weekly averages
 - For the seasonal predictions: monthly and seasonal averages
- The performance of the WRF model configurations using verification tools such as Model Evaluation Toolkit (MET)
 - ✓ The accuracy indices (ME, RMSE),
 - ✓ Skill score
 - ✓ Correlation coefficients (temporal and spatial relationships)
 - ✓ Taylor diagrams

RO3: Couple the atmospheric to a terrestrial model using WRF-Hydro for seasonal and sub-OF TWENTE. seasonal hydrometeorological predictions of the Upper Tekeze River Basin in Northern Ethiopia

- The current WRF-Hydro (version 5.0)
- The WRF model extension,
- Fully distributed hydrological modelling system
 - ✓ Integrates five models



UNIVERSITY

RO3: Model configuration (spatial transformation)

- Hydrological routing and channel network will be defined:
 - Using WRF-Hydro GIS pre-processing tool (version 5)
 - For hydrological routing, the LSM with 3 km resolution will be disaggregated to 300 m resolution using disaggregation factor of 10
 - To define streams, a threshold of 80 contributing grid cells with routing timesteps of the 20 seconds
 - Four layers soil column : 7cm, 28cm, 100cm and 1.89 cm

RO3: Model calibration and performance evaluation

- One year (2019) for calibration and one year (2020) for validation
- Two-steps manual calibration (Kerandi et al., 2018; Yucel et al., 2015)
 - 1. Infiltration scaling factor
 - 2. Surface retention depth parameter
 - Overland flow roughness parameter
 Manning's roughness coefficient factor

Temporal variation

Volume of hydrological response

The model performance will be assessed using:
 MRSE, NSE, Correlation studies, and Taylor diagram

Expected output

- Seasonal and sub seasonal rainfall, streamflow and soil moister prediction models
- Three (four) paper in high impact peer-reviewed journals;
 - Investigate the teleconnection between global climate driving factors and seasonal and sub-seasonal rainfall variation over Northern Ethiopia
 - Customize the WRF model as a regional climate model for seasonal and subseasonal rainfall prediction in Northern Ethiopia
 - Sensitivity analysis of global SST and zonal winds in a complex topography in prediction of the JJAS rainfall at seasonal and sub-seasonal timescales over northern Ethiopia.
 - Joint atmospheric-terrestrial (WRF-Hydro) modelling for seasonal and subseasonal hydrometeorological predictions in Upper Tekeze basin, Northern Ethiopia.
- One PhD thesis, two MSc thesis and policy briefs

Research and academic work plan

No	Activity								Yea	rs							
			l (July 2018- June 2019) ITC, UT			II (July 2019- June 2020) MU, Ethiopia ITC			ie	III (July 2020- June 2021) TC, UT MU, Ethiop			ine	IV (July 2021- June 2022) pia ITC, UT			ine
									ITC,				thiop				
		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Г
1	Literature review																
2	Proposal development																
3	Coursework and Training																
4	Qualifier																Γ
5	Year I. Progress Report																
6	Fieldwork 1: data collection for Objective 1 and 2																
7	Data analysis and paper write up of for objectives 1 and 2 and submission paper 1 and 2 for publication																
8	Seminar participation																
9	Year II. Progress Report																Γ
7	Fieldwork 2: data collection for Objective 3																
8	Data analysis and paper write up for Objective 3 and 4 and submission 3 rd paper for publication																
9	Year III. Progress Report																
10	Fourth paper write up and submission for publication																
11	Incorporate comments and suggestions																
12	Final thesis organization, synthesis, and submission																ſ
13	Defense																1

Thank you for listening

Thank you for listening											
Preliminary results from three days WRF runs	Geogrid geo_emd03.nc@v51 Second Control of the second control of	Meteorological grid	WRF_out Image: Wrfout_d03_2012-09-01_00.000009x51 Soil moisture (m³)m³) Image: Wrfout_d03_2012-09-01_00.00009x51 Image: Wrfout_d03_2012-09-01_000009x51 <th>UNIVERSITY OF TWENTE</th>	UNIVERSITY OF TWENTE							
	geo_em.d03.nc@v51 ×	met_em.d03.2015-07-09.000000nc@x51 × Height of max wind level (m)	U-wind(m/s)	20							